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The physical theory of the Foucault test has been investigated to represent the complex amplitude and irradiance
of the shadowgram in terms of the wavefront error; however, most of the studies have limited the treatment for the
particular case of nearly diffraction-limited optical devices (i.e., aberrations smaller than the wavelength). In this
paper we discard this restriction, and in order to show a more precise interpretation from the physical theory we
derive expressions for the complex amplitude and the irradiance over an optical device with larger aberrations. To
the best of our knowledge, it is the first time an expression is obtained in closed form. As will be seen, the result of
this derivation is obtained using some properties of the Hilbert transform that permit representing the irradiance in
a simple form in terms of the partial derivatives of the wavefront error. Additionally, we briefly describe from this
point of view a methodology for the quantitative analysis of the test. © 2014 Optical Society of America

OCIS codes: (120.4800) Optical standards and testing; (120.3180) Interferometry.
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1. INTRODUCTION
As a Schlieren technique the Foucault test is very simple,
highly sensitive, and very useful for testing optical devices,
such as lenses and mirrors. The Foucault test has been widely
applied over several decades to assess the quality of telescope
mirrors by means of detecting transverse aberrations using a
simple knife edge that blocks out part of the rays to form a
shadow pattern, usually called shadowgram. Despite its
advantages, the Foucault test has been mostly used as a first
qualitative test before the use of more sophisticated interfero-
metric techniques.

One of the main advantages of the Foucault test is its easy
interpretation from the geometrical point of view [1–3], which
states that the transverse ray aberrations are functions of the
partial derivatives of the wavefront. The geometrical theory
has been widely used to evaluate large aberrations.

The first advances in the analysis from the point of view of
the physical theory were reported by Gascoigne [4] and
Linfoot [5–8]. Later, some other advances were reported by
Barakat [9], Welford [10], Katzoff [11], and Wilson [12]; in
particular, Katzoff [11] proposed an inversion method of Lin-
foot’s formula using a linear approximation that permits one
to obtain an expression of the wavefront error in terms of the
irradiance distribution. Unfortunately, the physical theory has
been mostly used to analyze the complex amplitude and the
irradiance in the image plane considering the particular case
of wavefront errors smaller than the wavelength.

Opticians have long used the Foucault test in the geomet-
rical sense; however, the interpretation of the test from the
physical theory has been almost discarded for most practical
purposes.

Despite its great potential, the Foucault test has been little
explored for use as a sophisticated technique for quantitative
evaluations. Although the geometrical sense has been widely
used to analyze the Foucault test, it has some limitations
for this purpose. For this reason it is necessary to
explore in depth the physical theory to overcome these
limitations and to develop more sophisticated quantitative
evaluation techniques using the Foucault test, which is part
of our the current research.

In order to show a more precise interpretation from the
physical theory and its application to quantitative evaluations,
we now derive irradiance distribution models that are
obtained in closed form. As will be shown, the models are
deduced in this way using some properties of the Hilbert
transform.

2. PHYSICAL THEORY OF THE FOUCAULT
TEST
Consider the basic Foucault arrangement to test spherical
mirrors, as depicted in Fig. 1.

For simplicity, if we assume uniform illumination the com-
plex amplitude of the aberrated wavefront coming from the
mirror can be defined as

ψo�x; y� � a�x; y�ei2πλW�x;y�; (1)

where i �
������
−1

p
, λ is the wavelength of the light, W�x; y� the

wavefront deformations measured with respect to a reference
sphere, and the exit pupil of the system defined by its radius rp
such that
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a�x; y� � ao × circ
�
r
rp

�
; (2)

where

circ
�
r
rp

�
�

�
1 if r ≤ rp
0 otherwise

; (3)

ao is a constant, and r �
�����������������
x2 � y2

p
. To find the complex am-

plitude ψ i�x; y� in the image plane, we can consider a linear
space-invariant system h�x; y� such that

ψ i�x; y� �
Z

∞

−∞

Z
∞

−∞
ψo�x0; y0�h�x − x0; y − y0�dx0dy0

� ψo�x; y� � h�x; y�; (4)

where � represents convolution. Then, using the convolution
theorem, ψ i�x; y� can also be represented by means of the
inverse Fourier transform as [3]

ψ i�x; y� �
Z

∞

−∞

Z
∞

−∞
H�u; v�Ψo�u; v�ei2π�xu�yv�dudv

� F−1fH�u; v�Ψo�u; v�g; (5)

whereH and Ψo represent the Fourier transforms of h and ψo,
respectively, being

u � x
λR

and v � y
λR

: (6)

In Eq. (6) R represents the radius of the reference sphere.
The knife edge is a filter in the Fourier plane blocking out

part of the converging light. If it is placed vertically coinciding
with the v axis it can be represented by the Heaviside unit step
function:

H�u; v� �

8>><
>>:
0 if u < 0
1
2 if u � 0

1 if u > 0

� H�u�

� 1
2
�1� sgn�u��: (7)

As can be seen, H�u; v� is also expressed in terms of the
signum function. Since the filtering is realized only along
the u axis, it is represented as a single one-dimensional

function parameterizing the v variable. Now, substituting
Eq. (7) in Eq. (5) we obtain

ψ i�x; y� �
1
2
�ψo�x; y� � F−1fsgn�u�Ψo�u; v�g�

� 1
2
�ψo�x; y� � iHfψo�x; y�g�

� 1
2

�
ψo�x; y� �

i
π

Z
∞

−∞

ψo�x0; y�
x0 − x

dx0
�
; (8)

where H represents the Hilbert transform operator with re-
spect to x. When the mirror is free of aberrations, the Hilbert
transform in Eq. (8) results in the well-known form

Hfψo�x; y�g �
1
π

ln

������
x�

���������������
r2p − y2

q

x −

���������������
r2p − y2

q
������; (9)

which, in terms of intensity, represents a brilliant ring of light
at the edge commonly observed in experiments.

3. SHADOWGRAM MODELING FROM THE
PHYSICAL THEORY
As can be seen, the analysis of the second term in Eq. (8) is the
key to deriving an expression for ui�x; y�, so we shall first
establish a result concerning such term.

The Hilbert transform is a useful mathematical tool to con-
struct an analytic function ĝ�x� from a real function g�x�, the
two being associated in the following way:

ĝ�x� � g�x� − iHfg�x�g; (10)

where g�x� and Hfg�x�g are the real and imaginary parts of
ĝ�x�, respectively. The Hilbert transform is also usually re-
ferred to as the quadrature function of g�x�.

For simplicity in the following derivation we assume
that rp is large enough that the size of the Airy disc is much
smaller than the spectral lobe due to W . Then, taking into
account that ψo�x; y� represents an analytic signal, we now
use some properties of the Hilbert transform [13] to obtain
an expression for Hfψo�x; y�g, in particular for the case

Wx�x; y� �
∂W
∂x

> 0; ∀ x: (11)

Considering that we can express ψo as

ψo�x; y� � α�x; y� � iβ�x; y�; (12)

where α and β represent the real and imaginary parts of ψo,
respectively, then

Hfψo�x; y�g � Hfα�x; y�g � iHfβ�x; y�g
� β�x; y� � iHfHfα�x; y�gg
� β�x; y� − iα�x; y�
� −iψo�x; y�: (13)

Generally, the condition of Eq. (10) is not satisfied (i.e., W is
not a monotonically increasing function for x). In a similar
way, it can also be verified that Hfψo�x; y�g � �iψo�x; y�
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Fig. 1. The Foucault test for a spherical mirror.
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for the caseWx�x; y� < 0; ∀ x. As a consequence of the Hilbert
transform properties (i.e., it represents the quadrature of the
function ψo) the local sign of Wx determines the sign of
Eq. (13) (see Fig. 2).

Therefore, in general

Hfψo�x; y�g ≈ −isgn�Wx�ψo�x; y�: (14)

Then, we rewrite Eq. (8) as

ψ i�x; y� ≈
1
2
�ψo�x; y� � sgn�Wx�ψo�x; y��

≈ H�Wx�ψo�x; y�: (15)

Finally, the irradiance I�x; y� that represents the shadowgram
can be modeled as

I�x; y� ≈ H�Wx�a2�x; y�: (16)

Since Eq. (14) is not well defined for Wx ≃ 0, Eq. (16) is an
approximation to I�x; y�, so that we can see in real experi-
ments that the shadowing is gradual instead of occurring a
sharp edge. This can be explained from the fact that

Ψo�u; v� � a0F fcirc�r∕rp�g � F fei2πλW�x;y�g

� a0rp
J1�2πrpρ�

ρ
� F fei2πλW�x;y�g; (17)

where ρ �
�����������������
u2 � v2

p
, which means that for rp large

Ψo�u; v� ≈ a0F fei2πλW�x;y�g: (18)

In other words, the shadowing in the image becomes sharper
with a larger rp.

4. QUANTITATIVE ANALYSIS FROM THE
PHYSICAL THEORY
A quantitative method to detectWx at a given point �x; y� is to
record the intensity as a function of the knife-edge position xs
as indicated in Fig. 3; then the edge in the plot of intensity
versus the knife-edge position is used to determine Wx [1,2].

Using the dummy variable û � u − us, where us � xs∕�λR�,
the complex amplitude as a function of xs in the image plane is

ψ i�x; y; xs� ≈
1
2
F−1f�1� sgn�û��Ψo�û� us; v�g

≈
1
2
�ψo�x; y�ei2πxus � iHfψo�x; y�ei2πxusg�

≈ H�Wx � λus�ψo�x; y�ei2πxus ; (19)
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Fig. 2. The horizontal axis represents the x variable in meters for
y � 0. (a) Profile of a simulated wavefront. (b) The normalized com-
plex amplitude ψo. (c) The normalized complex amplitude iHfψog.
Note the sign inversion with respect to ψo for Wx < 0.
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Fig. 3. Displacement xs of the knife edge for quantitative evalua-
tions.

Fig. 4. Simulation of a sequence of shadowgrams (from left-top to
right-bottom) for several positions (xs) of the knife edge, using a mir-
ror with spherical aberration.
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Fig. 5. Simulation of a typical normalized I − xs graph of a given site
�x; y� in the sequence of shadowgrams.
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and the intensity of the Foucault pattern as a function of xs is
then modeled as

I�x; y;xs� ≈ H�Wx � xs∕R�a2�x; y�: (20)

The edge in the I − xs graph at a given site �x; y� occurs for
H�0�, that is, where Wx � −xs∕R (see Figs. 4 and 5).

5. CONCLUSIONS
We have derived expressions to model the irradiance of shad-
owgrams using the physical theory, which allows a more pre-
cise interpretation from this point of view. The signum
function that represents the knife edge in the Fourier plane
permits expression of the complex amplitude in the image
plane in terms of the Hilbert transform. As shown, the use
of some basic properties of this transform has been the key
to deriving such image models. From this point of view we
have also described a methodology for the quantitative analy-
sis of the test.
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