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a b s t r a c t

Early detection is fundamental for the effective treatment of breast cancer and the screening

mammography is the most common tool used by the medical community to detect early

breast cancer development. Screening mammograms include images of both breasts using

two standard views, and the contralateral asymmetry per view is a key feature in detecting

breast cancer. However, most automated detection algorithms do not take it into account. In

this research, we propose a methodology to incorporate said asymmetry information into a

computer-aided diagnosis system that can accurately discern between healthy subjects and

subjects at risk of having breast cancer. Furthermore, we generate features that measure not

only a view-wise asymmetry, but a subject-wise one. Briefly, the methodology co-registers

the left and right mammograms, extracts image characteristics, fuses them into subject-

wise features, and classifies subjects. In this study, 152 subjects from two independent

databases, one with analog- and one with digital mammograms, were used to validate the

methodology. Areas under the receiver operating characteristic curve of 0.738 and 0.767, and

diagnostic odds ratios of 23.10 and 9.00 were achieved, respectively. In addition, the

proposed method has the potential to rank subjects by their probability of having breast
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. Introduction

reast cancer represents nearly one-third of all female cancer
ases in the United States [1] and is one of the global leading
auses of death among women [2]. Early detection is
undamental for the effective treatment of breast cancer,
nd furthermore, it has been proven to help reduce mortality
ates by up to 65% [3–5]. Currently, this is done with the aid of
ome type of medical imaging technique, such as mammog-
aphy, ultrasound, magnetic resonance imaging (MRI), posi-
ron emission tomography (PET), tomosynthesis, and
hermography [3].

Lately, thermography has gained some attention, since it is
 non-invasive and non-contact imaging technique. Instead of
sing ionizing radiation, venous access, or other invasive
rocedure, it uses the infrared electromagnetic radiation
mitted by the human body, which is captured by a
hermographic camera and analyzed by a computer-aided
ystem. Among the studies that use thermography images to
lassify between subjects with and without breast cancer, Ng
nd Fok [6] and Ng et al. [7] reported sensitivities of 0.689 and
.812, and specificities of 0.400 and 0.882, respectively. The
creening tomosynthesis has also gained popularity, mainly
ue to the fact that it may improve the detection rate and
ecrease the amount of false positive cases detected [8].
oussami et al. [9] compared screen-detection measures for
ingle-reading of tomosynthesis against double-reading mam-
ograms, and results showed a cancer detection rate of 8.2 vs.
.3 per 1000 screens.
Nevertheless, globally, and specially in developed coun-

ries, the screening mammography is still the most common
ool used by the medical community to detect early breast
ancer development. Mammograms allow clinicians to inspect
ach breast in two standard views, craniocaudal (CC) and
ediolateral oblique (MLO), where tissue abnormalities such
s calcifications, masses, and architectural distortions associ-
ted with the early development of breast cancer can be
isualized [3]. Furthermore, in recent years, great efforts have
een made to develop computer-aided detection (CADe) and
iagnosis (CADx) systems to assist radiologists in interpreting
igital mammograms [10–13]. Namely, CADe and CADx
ystems are being developed in order to aid specialists in
he detection of tissue abnormalities. However, detecting such
bnormalities represent a challenging task due to the low
ignal-to-noise ratio of the mammograms, the heterogeneous
issue content of the breasts, as well as their size and shape,
nd the size, shape, and location of the abnormalities [14–16].
CADe systems have been shown to be very sensitive in

etecting breast abnormalities [17,18], but these systems tend
o have low specificities, producing a large number of false

and/or calcifications not accurately aligned with the abnor-
malities, misleading the radiologists [15,19,20]. Nevertheless,
several researchers are currently working to enhance the
performance of CADe systems. An example of this can be
found in the work done by de Sampaio et al. [21], in which
they aimed at detecting masses. First, they classified breasts
as either dense or non-dense using an adaptive algorithm.
Then, they used a micro-genetic algorithm to create a texture
proximity mask with which suspicious regions were local-
ized. Lastly, they reduced the amount of false positive regions
using two different approaches, one with a density-based
spatial clustering and a proximity ranking of the textures
extracted from the suspicious regions, and the other with a
texture analysis by the combination of phylogenetic trees,
local binary patterns, and support vector machines (SVM).
They produced sensitivities of 0.837 and 0.930, and a rate of
0.19 and 0.15 false positives per image, for the dense and non-
dense breasts, respectively. Dhungel et al. [16] also presented
a CADe/CADx system for the detection of masses. Using a
cascade of deep learning methods refined using Bayesian
optimization, this system detected 90% of masses at a rate of
1 false positive per image.

On the other hand, CADx systems can be used by
radiologists as a second opinion [2,22,23] and may help in
reaching a correct interpretation of abnormal findings, thus,
reducing the amount of unnecessary biopsies [10,14,19,22,24].
In this regard, the previously discussed work by Dhungel et al.
[16] was able to classify masses as either malignant or benign
with a sensitivity of 0.90 and a specificity of 0.7. Similarly,
Raghavendra et al. [25] presented an automated classification
system based on Gabor wavelets, locality sensitive discrimi-
nant analysis, and a k-nearest neighbor classifier. This system
yielded a mean accuracy, sensitivity, and specificity of 0.987,
0.993, and 0.983, respectively.

But, the detection of breast abnormalities can be enhanced
by comparing different images of the same subject, either from
the same breast at different time points [26] or by contralateral
asymmetry analyses that measure the differences between
the left and right breasts at a specific time point [27,28].
Furthermore, it has been shown that the contralateral
asymmetry may be a risk factor for breast cancer. Neverthe-
less, due to the challenges that measuring such an asymmetry
implies, most of the automated detection approaches to date
do not take contralateral asymmetry into account [29].

Current asymmetry detection methods are often based on
simple bilateral subtraction techniques [26,30]. However,
breasts are composed of highly heterogeneous and deformable
tissue, resulting in an unlikely perfect match between both
breasts [27]. To avoid this problem, Miller and Astley [31]
proposed a technique for the detection of asymmetry using a

cancer, aiding in the re-scheduling of the radiologists' image queue, an issue of utmost

importance in developing countries.

© 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish

Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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ositives that yield an increased amount of unnecessary
iopsies. Moreover, current methodologies detect masses
Please cite this article in press as: Celaya-Padilla JM, et al. Contr
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
semi-automated texture-based procedure for the segmenta-
tion of the glandular tissue, measuring the shape between
alateral asymmetry for breast cancer detection: A CADx approach.
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views for detection of the occurrence of asymmetry, obtaining
an accuracy of 0.867 on a validation data set of 30 screening
mammogram pairs. Later, Miller and Astley [32] presented a
system based on measures of shape, topology, and distribution
of brightness. The method was tested on 104 mammogram
pairs, and a classification accuracy of 0.74 was obtained.
Similarly, Ferrari et al. [33] developed a method using
directional filtering with Gabor wavelets at different orienta-
tions and scales. There, asymmetry was characterized by
variations in oriented textural patterns. Validated in a data set
of 80 subjects, they achieved a classification accuracy rate of
0.744%. More recently, Torrents-Barrena et al. [34] also used a
Gabor-based detection coupled to an SVM classification stage,
yielding an area under the receiver operating characteristic
(ROC) curve (AUC) ranging from 0.724 to 0.827. Recently Evans
et al. [35] demonstrated that cancer signal information is
present in the contralateral breast where the tumor was
originally diagnosed, but despite this, CADe/CADx systems do
not fully incorporate the contralateral/asymmetry informa-
tion into their process.

The objective of this work was to develop a CADx
methodology that incorporates information from both breasts,
as well as their contralateral asymmetry, in order to
automatically classify subjects as either healthy or in risk of
having breast cancer. Additionally, we aimed at ranking
subjects within a subset by their risk of having breast cancer,
a characteristic that would make this CADx system of great
importance in developing countries, where radiologists have
workloads that exceed their capabilities. This methodology,
based on previous efforts [36], co-registers the left and right
images, extracts image features, and performs a classification
enhanced by a robust feature selection algorithm. Moreover,
we propose the use of subject-wise features in order to avoid
side- and view-dependency and to create subject-specific
Fig. 1 – Overview of the pr

Please cite this article in press as: Celaya-Padilla JM, et al. Contrala
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
prediction models, instead of region-specific predictions. This
methodology was validated in two independent publicly
available data sets containing both digital and analog
mammograms.

This paper is organized as follows: Section 2 presents the
proposed methodology in detail, Section 3 reports the results
of the experiments, which are thoroughly discussed in
Section 4, and final conclusions are presented in Section 5.

2. Materials and methods

An overview of the proposed methodology is shown in Fig. 1.
Briefly, the mammograms of each subject were first pre-
processed and segmented in order to analyze the breast tissue
alone. Then, the left mammograms (CC and MLO) were
registered into their corresponding right mammograms using
a B-Spline algorithm, which aligned both images in the same
coordinate plane. A pixel-wise subtraction was then carried on
between the co-registered images, yielding a CC and an MLO
contralateral asymmetry image per subject. Four enhance-
ment filters were then applied to the asymmetry images, and
several features were extracted from each. These view-specific
features were combined in order to obtain subject-specific
features. Finally, using robust machine learning algorithms, a
diagnostic model able to classify subjects was generated.

2.1. Image processing

2.1.1. Segmentation
The automatic segmentation of the breast tissue was based on
the estimation of the background noise. An initial segmenta-
tion mask was created by estimating the background noise in
the image and discarding all pixels below five standard
oposed methodology.

teral asymmetry for breast cancer detection: A CADx approach.
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eviations of the noise level. Then, holes were removed by
pplying erosion and dilation morphological operations with a

 � 3 supporting region, as defined in:

i
jðx; yÞ ¼ ðIijðx; yÞ�Bðx; yÞÞ�Bðx; yÞ; (1)

here Sijðx; yÞ and Iijðx; yÞ represent the segmented and raw
mages for the ith view, either CC or MLO, and the jth side,
ither left (l) or right (r), respectively; � and � are the dilation
nd erosion morphological operations, respectively; and B(x, y)
s a 3 � 3 structural element. The largest region was used as the
egmentation mask while all other high intensity regions were
emoved from the images.

.1.2. Registration
s previously mentioned, the breast is a highly heterogeneous
rgan whose appearance can physiologically change signifi-
antly between sessions. Additional dissimilarities between
mages, related to patient movement, sensor noise, different
adiation exposure, or variation of breast compression also
akes this comparison difficult. Therefore, in order to
fficiently compare two mammograms, an initial alignment
sing an image registration algorithm had to be carried out.
e performed a free-form deformation (FFD) based on B-

plines. B-Spline deformable registration is based on deform-
ng an image by modifying a mesh of control points following a
aximization of a similarity measure [37,26]. For 2D images,

uch as the mammograms involved in this study, B-splines
an be modeled by the tensor product of the 1D cubic B-splines.

 2D non-rigid transformation can be written as: T(rp) = rp + d
rp), where rp represents the x and y coordinates of the pth pixel
nd d(ri) the deformation it suffers. The 2D deformation was
odeled as d(rp) = hdx(rp), dy(rp)i using the tensor product of b,

he nth-order B-splines, as follows:

qðrpÞ ¼
X
i;j

cqi;jb
x
mx

�i
� �

b
y
my

�i
� �

(2)

here dq(rp) represents the deformation of the pth pixel in the
th axis plane (x or y), c ¼ cqij is the deformation coefficient for
ig. 2 – Bilateral differences. (a) Shows a segmented mammogra
nd (c) a color map of the resulting asymmetry image, where 

espectively.

Please cite this article in press as: Celaya-Padilla JM, et al. Contr
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
the qth plane, and mq is the knot spacing in the qth direction.
The deformation coefficients were estimated by maximizing
the similarity metric c, according to:

cqi;j ¼ argmax
q

chSirðx; yÞ; Silðx; yÞi (3)

For this study, a multi-resolution B-Spline pyramid
approach was used [36,38]. First, the left segmented mammo-
grams were horizontally flipped. Then, both the flipped left
images (CC and MLO) and their right non-flipped counterparts
were re-sampled into lower resolution images. Next, the
pyramids for the multi-resolution were generated and
registration was performed. The left segmented mammo-
grams were deformed using the final parameters of the
registration, where a mutual information metric [39] was used
as the similarity metric c.

2.1.3. Contralateral asymmetry
Once the images were co-registered, and in order to enhance
the differences between the breasts, a pixel-wise absolute
difference was computed between each left-right pair of
mammograms, resulting in asymmetry images Di(x, y), defined
as:

Diðx; yÞ ¼ Ri
l ! rðx; yÞ�Sirðx; yÞ

��� ��� (4)

where Ri
l ! rðx; yÞ represents the left to right registered image for

the ith view. Fig. 2 shows an example of a mammogram that
was co-registered and subtracted in order to highlight the
bilateral differences.

2.1.4. Enhancement filters
To study the appearance of the architectural distortions, two
enhancing filters were applied to the asymmetry images, a
morphological high frequency enhancement filter Mi(x, y)
designed to enhance fiber-like tissues, and a Laplacian of
Gaussian filter Li(x, y) that enhanced high frequency patterns.
Additionally, since the texture between normal and abnormal
tissues is different [40], two texture maps were created. The
map si(x, y) computed the local standard deviation of the
phy of a right breast, (b) its left to right registered counterpart,
left and blue indicate small and large bilateral differences,

alateral asymmetry for breast cancer detection: A CADx approach.
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Fig. 3 – Enhancement filters. Color map of the (a) morphological high frequency Mi(x, y), (b) Laplacian of Gaussian Li(x, y), (c)
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mammography images, and the map Fi(x, y) the local fractal
dimension. Image processing was implemented in Cþþ using
ITK libraries for image manipulation [41] following the
previous implementation presented in [36]. Image 3 shows
an example of each one of these filters.

2.1.5. Feature extraction
A main step in any kind of pattern recognition problem is the
representation of data, in this case the characterization of the
breast tissue and their properties [42]. There are several
features that may be quantified aiming to detect early signs of
cancer, following our previous efforts [36], we propose the
study of 44 features that are related to either the morphology
of the breasts or to the information found in the signal of the
images. All features are described in Table 1.

2.1.6. Feature combination
In order to go from view-specific features into subject-specific
features we propose the combination of each pair of CC and
MLO features by adding and subtracting them, as defined by:

fþn ðkÞ ¼ f nðkCCÞ þ f nðkMLOÞ
f�n ðkÞ ¼ f nðkCCÞ�f nðkMLOÞ

��� ��� (5)

As described in Fig. 1, 88 subject-specific features were
extracted per pair of CC and MLO images, resulting in a total of
440 features per subject.

2.1.7. Feature selection
In recent years, several feature selection methodologies have
been studied for breast cancer detection. Algorithms such as
LASSO, KNN, SVM and others have been widely used due to
their performance [43,44], but as of today, there is not a golden
method that outperforms any other classifier in every task. We
previously compared the performance of several classifiers
[43,44,36]. Following our findings, we propose the use of FRESA.
CAD. FRESA.CAD is an R package that uses a bootstrapped stage-
wise model selection (B:SWiMS) algorithm. FRESA.CAD internally
computes LASSO, KNN, B:SWIMS, B:SWIMS with bagging, and B:
SWIMS ensembled. Therefore, we were able to compare in a
single procedure the efficiency of the methodology in a wide
Please cite this article in press as: Celaya-Padilla JM, et al. Contrala
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
range of feature selection algorithms at the same time, with
exactly the same conditions in the train and validation stages.
Further details of the FRESA.CAD package can be found in http://
cran.r-project.org/web/packages/FRESA.CAD/index.html.

2.2. Data acquisition

In this research, two publicly available data sets were used:
The Digital Database for Screening Mammography (DDSM) and
the Breast Cancer Digital Repository (BCDR). DDSM [45] is one
of the largest public mammogram databases, it has been used
in over 500 research projects (up to 2016). This database has
2620 cases distributed as follows: 625 healthy subjects, 1011
benign cases, and 914 malign cases. It includes two standard-
ized CC and MLO mammograms per subjects, and was
constructed by taking film-based mammograms that were
then digitized using four different scanners: DBA, HOWTEK-A,
LUMISYS, and HOWTEK-D. BCDR is a fairly newer public
database [46]. It is maintained by the IMED Project (Develop-
ment of Algorithms for Medical Image Analysis), which was
created and updated by the INEGI, FMUP-CHSJ, and CETA-
CIEMAT, from 2009 to 2013. The BCDR is a 100% digital
mammogram database, it has 774 subjects (723 women and 1
male), from an age range between 27 years and 92 years. The
images are stored in a TIFF format at 14 bits, and the type of
scanner is undisclosed.

From the above mentioned data sets, we used the Lumisys
subset from the DDSM data set and the whole BCDR data set.
Using this data sets we created two categories, healthy
subjects and non-healthy subjects. The latter refer to those
with proven cancer (i.e. masses, calcification, distortions, etc.)
and benign abnormalities of any type. The data sets were
adjusted to exhibit the same ratio between the healthy and
non-healthy groups, yielding a total of 152 subjects. Table 2
shows the detail of the data used in this research.

2.3. Experiment design

Two experiments were performed, one for each data set.
Features were first z-normalized using a rank-based inverse
normal transformation [47]. Afterwards, correlation between
pairs of features was evaluated, and for each pair of highly
teral asymmetry for breast cancer detection: A CADx approach.
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Table 1 – Features extracted from each asymmetry image.

Category Feature Definition

Shape Surface area AR(k) =
P

(x,y)2kax,y

Perimeter P(k) =
P

i2e(k)d(ei, ei+1)

Compactness CðkÞ ¼ PðkÞ2
AðkÞ

Elongation EðkÞ ¼ argmaxq Lq
argminq Lq

2Region centroid qÃRðkÞ ¼ hxÃRðkÞ ¼ m10
m00

; yÃRðkÞ ¼ m01
m00

i
3Region scatter SRðkÞ ¼ hm20

m00
�xÃ

2
R;

m11
m00

�xÃRyÃR;
m20
m02

�yÃ
2
Ri

Signal Mean mðkÞ ¼ Pmaxi
i¼0 ipiðkÞ

Median v50ðkÞ
Energy EðkÞ ¼ Pmaxi

i¼0 i2piðkÞ

Variance s2(k) = E2(k) � m2(k)

Standard deviation sðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2ðkÞ

p
Dynamic range DR(k) = argmax8(x,y)2k ix,y � argmin8(x,y)2k ix,y

z-mean zðkÞ ¼ mðkÞ
sðkÞ

Entropy HðkÞ ¼ Pmaxi
i¼0 piðkÞlogpiðkÞ

Skewness gðkÞ ¼ Pmaxi
i¼0 piðkÞ i�mðkÞ

sðkÞ
� �3

Kurtosis bðkÞ ¼ Pmaxi
i¼0 piðkÞ i�mðkÞ

sðkÞ
� �4

�3

z-Range zDRðkÞ ¼ DRðkÞ
sðkÞ

2Fraction <s pi < sðkÞ ¼ hPv2s ðkÞ
i¼0 piðkÞ;

Pv3s ðkÞ
i¼0 piðkÞi

2Fraction >s pi < sðkÞ ¼ hPmaxi
i¼v2s ðkÞpiðkÞ;

Pmaxi
i¼v3s ðkÞpiðkÞi

10Percentile vnðkÞ : n ¼ h0:01; 0:1; a; e; 10; 25; 75; 90; 95; 99; 99:9; 99:99i

Trimmed mean mtðkÞ ¼ Pv95ðkÞ
i¼v5ðkÞipiðkÞ

Trimmed s stðkÞ ¼ Pv95ðkÞ
i¼v5ðkÞði�mtðkÞÞ2piðkÞ

h i1=2

Trimmed z-mean ztðkÞ ¼ mtðkÞ
stðkÞ

Total signal M0,0 =
P

8(x,y)2kix,y

2Signal centroid qÃSðkÞ ¼ hxÃSðkÞ ¼ M10
M00

; yÃSðkÞ ¼ M01
M00

i
2Signal scatter SsðkÞ ¼ hM20

M00
�xÃ

2
S;

M11
M00

�xÃSyÃS;
M20
M02

�yÃ
2
Si

Signal surface AS ¼ Dxy D2
xy þ 4 ix;y�qÃSðkÞ

� 	2� �1=2

Numbers in superscript indicate the times a feature was measured, those without a superscript were measured once; ax,y is the unit area of a
pixel; d(ei, ei+1) is the Euclidean distance between the ith and the ith þ 1 neighboring edge points found in the set of edge points e(k); Lq is the
length of the bounding boxing the q axis; mi,j Mi,j and the moment functions of the shape and the signal of k, respectively; ix,y is the intensity of
the pixel at the x, y coordinates and pi(k) is the relative frequency of the ith intensity; vnðkÞ is the intensity of the pixel located at the nth%
position of the ordered intensities of k; and Dx,y is the image size.
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orrelated features (Pearson correlation larger than 0.9), one of
uch features was removed. Then, the feature selection procedure
as performed using a 10-fold cross-validation repeated 20 times.
his was done to avoid bias towards a specific data set partition.
alse discovery rate was set to 0.025 to avoid non-statistical
ignificant features to be incorporated into the models.

. Results

n order to have a full spectrum of the performance for the
roposed methodology, accuracy, area under the receiver
Please cite this article in press as: Celaya-Padilla JM, et al. Contr
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
operator characteristic (ROC) curve (AUC), sensitivity, and
diagnostic odds ratio (dOR) were computed at different
specificities (best, 0.5, 0.8, 0.9). Tables 3 and 4 show the results
for the proposed methodology, and Figs. 4 and 5 show the ROC
curve for the proposed methodology, for the BCDR and the
DDSM data sets, respectively. All the results shown were
computed using the ensembled prediction of the test, the one
taking into account the results from the 20 iterations of the
feature selection procedure.

The model selection strategy yielded reproducible models
of healthy vs. non-healthy subjects with an AUC of 0.738 for
the BCDR data set. An ODDS ratio of 23.10 was achieved along
alateral asymmetry for breast cancer detection: A CADx approach.
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Table 2 – Distribution of mammograms.

Subset Healthy Non-healthy Total

DDSM-Lumisys 32 56 88
BCDR 23 41 64
Total 55 97 152

Table 3 – Healthy vs. non-healthy. Final model performance in the BCDR data set.

Model Accuracy AUC Sensitivity Specificity dOR

BSWIMS
Best 0.672 0.738 0.512 0.957 23.100
specificity@0.5 0.586 0.738 0.634 0.500 1.733
specificity@0.8 0.647 0.738 0.561 0.800 5.111
specificity@0.9 0.667 0.738 0.537 0.900 10.421
KNN
Best 0.563 0.683 0.366 0.913 6.058
specificity@0.5 0.662 0.683 0.753 0.500 3.049
specificity@0.8 0.569 0.683 0.440 0.800 3.141
specificity@0.9 0.563 0.683 0.374 0.900 5.386
LASSO
Best 0.688 0.655 0.707 0.652 4.531
specificity@0.5 0.633 0.655 0.707 0.500 2.417
specificity@0.8 0.538 0.655 0.390 0.800 2.560
specificity@0.9 0.511 0.655 0.293 0.900 3.724

Table 4 – Healthy vs. non-healthy. Final model performance in the DDSM data set.

Model Accuracy AUC Sensitivity Specificity dOR

BSWIMS
Best 0.750 0.767 0.750 0.750 9.000
specificity@0.5 0.682 0.767 0.786 0.500 3.667
specificity@0.8 0.689 0.767 0.625 0.800 6.667
specificity@0.9 0.634 0.767 0.482 0.900 8.379
KNN
Best 0.693 0.758 0.589 0.875 10.043
specificity@0.5 0.698 0.758 0.811 0.500 4.297
specificity@0.8 0.686 0.758 0.621 0.800 6.541
specificity@0.9 0.580 0.758 0.396 0.900 5.911
LASSO
Best 0.773 0.838 0.696 0.906 22.176
specificity@0.5 0.750 0.838 0.893 0.500 8.333
specificity@0.8 0.734 0.838 0.696 0.800 9.176
specificity@0.9 0.770 0.838 0.696 0.900 20.647
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with a sensitivity of 0.512 and a specificity of 0.957. The
bilateral model achieved a high specificity, making the
Bilateral model highly suitable to detect the abnormalities.
Classic KNN and LASSO feature selection methodologies
achieved similar AUC results, nevertheless with a ODDS ratio
of only 6.058 and 4.531 respectively.

The ROC curve analysis for the BCDR data set is shown in
Fig. 4, as we can see the ensemble prediction of the three
feature selection algorithms have a similar performance
with AUC ranging from 0.738, 0.683, 0.655 for B:SWiMS, KNN,
and LASSO respectively. As we can see the use of patient
features yields to reproducible models that can be used to
triage the detection of abnormalities related to breast
cancer.
Please cite this article in press as: Celaya-Padilla JM, et al. Contrala
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
On the other hand, the model selection B:SWiMS strategy
when used on the healthy vs. Other abnormalities in the DDSM
data set achieved an ensemble test AUC of 0.767. An ODDS
ratio of 9.00 was achieved along with a sensitivity of 0.750 and
a specificity of 0.750. as in the previous data set, the KNN and
LASSO feature selection methodologies achieved similar AUC
results, here, the ODDS ratio increased to a 10.043 and 22.176
respectively. The ROC curve analysis for the DDSM data set is
shown in Fig. 4, the ensemble prediction of the three feature
selection algorithms have a similar performance with AUC
ranging from 0.767, 0.758 and 0.838 for B:SWiMS, KNN, and
LASSO respectively. As we can see the use of patient features
yields to reproducible models that can be used to triage the
detection of abnormalities related to breast cancer.
teral asymmetry for breast cancer detection: A CADx approach.
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Fig. 4 – ROC curves for the healthy vs. non-healthy classification in the BCDR data set.

Fig. 5 – ROC curves for the healthy vs. non-healthy
classification in the DDSM data set.
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. Discussion

espite working with two different sets of images, one digital
nd one analog, the proposed registration methodology was
ble to successfully align the contralateral images. Once the
mages were aligned, the bilateral image subtraction generat-
d an asymmetry image, which was enhanced with four
Please cite this article in press as: Celaya-Padilla JM, et al. Contr
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
different filters. Then, 880 subject-specific features were
extracted. The creation of new features by merging the CC
and MLO views helped to eliminate the dependency on view.
The model selection strategy yielded reproducible models of
healthy vs. non-healthy subjects for the BCDR and DDSM data
sets. The bilateral approach model achieved a high specificity,
making the Bilateral model highly suitable to detect any
abnormalities and may be used to triage the detection of
abnormalities related to breast cancer.

One key feature over previous approaches [33,48,49] is that
they only try to detect breast cancer, i.e. only malignant cancer
lesion, while our approach combine the benign and malign
abnormalities into one category, that imply, the detection of
the abnormality from the healthy ones regarding the type of
abnormality i.e. (calcification, masses, architectural distortion,
etc.) effectively making it a more complex problem, yet,
obtaining great results. One of the main reason to combine
said lesions, is that if leaved untreated benign abnormalities,
they may evolve into malign lesions. The proposed methodol-
ogy is fully automated, there is no need for human interven-
tion as other approaches [50]. The proposed CADx system
targets develop countries where the access to medical care is
limited, and there is a deficit of trained radiologists, therefore a
tool that successfully ranks the subjects according to the
changes of having breast cancer related abnormalities may
reduce the mortality rate. Moreover the models created using
the patient features use subjects features rather than side
specific mammograms as in other approaches. Even with
different feature selection algorithms, LASSO, KNN, and B:
SWIMS the performance was similar. This similar perfor-
mance suggests that the proposed methodology is not specific
to a particular feature selection algorithm. Moreover the
achieve ODDS ratio of the presented model suggest a high
association.
alateral asymmetry for breast cancer detection: A CADx approach.
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Table 5 – Similar approaches comparison.

Author Asymmetry approach Type Performance

Rodriguez-Rojas
et al. [51]

Bilateral asymmetry used to classify low/high
risk mammograms (bi-rads based) – genetic
algorithm as feature selection

Feature-based AUC = 0.88

Martí et al. [49] Use only MLO mammograms to classify
abnormal/normal cases, bilateral feature-based,
random forest-LOOCV

Temporal registration
based

AUC = 0.76

Zheng et al. [26] Bilateral density asymmetry to classify high risk
patients, temporal study

No registration AUC = 0.761

Wang et al. [28] Feature-based bilateral asymmetry to classify
low/high risk mammograms, ANN, no
registration

Feature-based AUC = 0.75

Tan et al. [52] Near-term breast cancer prediction, using
feature based asymmetry SVM

Feature-based AUC = 0.72

Yin et al. [50] Detection of masses, bilateral subtraction Manual registration A 95 % TP with a 3FP � image
Our approach Detection of any type of abnormalities (MC,

masses, etc.), bilateral subtraction
Automated registration Two independent datasets with

AUC of 0.738 and 0.767 respectively.
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In Table 5 a comparison against similar approaches is
presented, the authors acknowledge that there are several
approaches in the field of breast cancer detection, neverthe-
less, only approaches that incorporate some type of bilateral
analysis were included. In Table 5 we can see, that most of
the approaches does not incorporate any sort of alignment
prior the comparison, only Yin et al. [50] incorporate manual
bilateral registration, while Martí et al. [49] indeed includes
automatic registration but is limited to only temporal
registration. All other approaches [51,26,27,52] are feature-
based only. The presented performance is similar to those
that incorporate any asymmetry analysis, nevertheless, our
approach was validated in two independent and different
type of mammograms (digital and film), even further, those
datasets included different ethnicities, while the others were
tested only on a single dataset. When comparing our
approach with others, we can notice that all others only
try to detect breast cancer (i.e. only malignant cancer
lesions), while our approach combine the benign and malign
abnormalities into one category, that implies, the detection
of the abnormality from the healthy ones regarding the type
of abnormality, i.e. (calcification, masses, architectural
distortion, etc.). Even further, our approach fusions the
features from the CC and MLO views, successfully creating a
score for each patients while others only output a score for a
single mammogram, this approach may output false
negatives in some cases where the same breast (i.e. left)
may score positive for CC and it may also score negative for
the same MLO view, while in our fusion approach the
features are patient-based and not bias towards a specific
view as others.

This research was performed using a Quad core (8 threads)
Xeon processor at 3.0 GHz, 16 GB of RAM, the average time for
the image processing stage was 9-11 minutes by each subject,
on the feature selection, FRESA.CAD use the FPR to reduce the
number of features in each selection stage, the algorithm have
a complexity of O(ndk), where n is the cardinality of the
training set, d is the dimension of each sample and k is the
model size. the average computational time was on average 20
minutes, nevertheless, FRESA.CAD can work on multiple cores
at the same time reducing the time according the resources
Please cite this article in press as: Celaya-Padilla JM, et al. Contrala
Biocybern Biomed Eng (2017), https://doi.org/10.1016/j.bbe.2017.10.005
available. The FRESA.CAD time may be somehow long, but the
training phase needs to be carryout once.

The proposed methodology exhibits some limitations,
among them, there is the necessity of the CC and MLO from
the left and right mammograms, this may leave out subjects
that undergo only to a specific side mammogram, or women
that went under surgical mastectomy and therefore the
bilateral analysis can not be performed. Other limitation
reside in subjects with breast implants, that due the high
radioluminiscent of the implant, it may lead to unrealistic
bilateral registration of the breasts, therefore, limiting the use
to women without breast implants.

5. Conclusions

The presented CADx methodology yielded to the creation of
patient features that fusion the information of contralateral
asymmetry and the different views into single features. The
methodology was validated in two independent data sets
using both analog and digital mammograms, and different
type of scanners. The achieved results shown that the
methodology could classify healthy subjects from any other
type of cancer or benign abnormality, to our knowledge it is the
first approach that works with any other type of abnormality.
The proposed methodology yielded reproducible and similar
results even with different model selection strategies. The
models have the potential to be used to queue cases with a
high chance of malignant findings, effectively reducing the
radiologist workload. Such models have the practical use of
triaging mammograms in developing countries where there is
a deficiency of expert readers.

Future work will focus on validating the methodology on
clinical scenarios and the implications of translating this
methodology to health systems.
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