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Regularized quadratic cost function
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We use the regularization theory in a Bayesian framework to derive a quadratic cost function for denoising
fringe patterns. As prior constraints for the regularization problem, we propose a Markov random field
model that includes information about the fringe orientation. In our cost function the regularization term
imposes constraints to the solution (i.e., the filtered image) to be smooth only along the fringe’s tangent di-
rection. In this way as the fringe information and noise are conveniently separated in the frequency space,
our technique avoids blurring the fringes. The attractiveness of the proposed filtering method is that the
minimization of the cost function can be easily implemented using iterative methods. To show the perfor-
mance of the proposed technique we present some results obtained by processing simulated and real fringe

patterns. © 2009 Optical Society of America
OCIS codes: 100.2650, 100.3020.

The demodulation of digital fringe patterns is widely
used in optical tests such as electronic speckle pat-
tern interferometry (ESPI), holographic interferom-
etry, or moiré interferometry. Several techniques can
be applied for the extraction of the phase field; how-
ever, in the process of formation and acquisition of
fringe patterns, noise commonly contaminates im-
ages. For this reason denoising fringe patterns plays
an important role to make phase extraction easier,
more robust, and more accurate. However, the fre-
quencies of fringes and noise usually overlap and
normally cannot be separated properly, and common
filters for image processing have blurring effects on
fringe features, especially for patterns with high-
density fringes. For these cases the use of anisotropic
filters is a better way for removing noise without
blurring effects.

In the field of image processing, the regularization
theory [1-3] has been demonstrated to be a powerful
tool for reconstructing images. Particularly, in the
past few years some works have been developed for
fringe analysis, among them are the works in [4,5].
Although directional filtering has been studied for
fringe images, for example, the outstanding work by
Tang et al. [6] that proposed second-order oriented
partial-differential equations for denoising ESPI
fringes, we use a different and powerful mathemati-
cal tool for this purpose. In this Letter we derive a
regularized quadratic cost function that is used for
denoising along fringes in this kind of images.

It is widely known that the problem of reconstruct-
ing an image x from a degraded image y, i.e., the ob-
served image, is often formulated according to the
model

y=H(x)+n, (1)

where n is the additive noise and H may represent a
linear operator that is assumed to be known, which
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may be some kind of distortion. For example, H may
be the point spread function of the imaging system.
In general, the information provided by the observa-
tions of y is not enough for a proper estimation of x.
For an adequate recovery of x we need to regularize
the problem including prior information about the
characteristics of the field to be estimated. The sto-
chastic route to regularize the problem described in
Eq. (1) may be derived using the Bayesian estima-
tion. Using the Bayes’s rule, one may model the pos-
terior distribution of x with a given y as

P (x) = KP,,(x)P,(x), (2)
where K is a constant and
P, (x)=K, exp| - > ®(H(x,) -, (3)
melL

represents the conditional distribution of y with a
given x, @ is a potential function that is defined by
the noise model, m=(i,j) is the image coordinates in
a regular lattice L, and K; is a constant. The prior
distribution P,(x) that is commonly used in the
framework of the Bayesian regularization are the
Markov random fields (MRF's) [3,7,8], which are de-
fined by a set C of potential functions V, that ranges
over the cliques associated with a given neighborhood
system. An important characteristic of the MRF's is
that the probabilistic dependencies of the elements of
the estimated field are local, which make MRFs ad-
equate for modeling piecewise smooth functions. Us-
ing an MRF, P,(x) is then given by the Gibbs distri-
bution

P,(x) =K, exp[- > Vc(x,,»] , (4)

where K, is a normalizing constant.
Then, we can define the maximum a posteriori es-
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