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Abstract

A biased bootstrap technique is presented to obtain 
robust parameter and measurement estimates. 
Moreover, the estimation of a measurement 
probability density function (pdf) using classical 
bootstrap techniques is presented as our final goal. 
Most of the time, large scale repetition of an 
experiment is not economically feasible, the Monte 
Carlo method cannot be used for uncertainty 
characterization and bootstrap methods are proved 
to be a potentially useful alternative. The 
measurement characterization is driven by the pdf 
estimation in a non-linear non-Gaussian case and 
with limited observed data. 

I. Introduction

In many industrial applications, direct access to a 
measurement )(m  is not possible, so the 

measurement process must be considered as an 
inverse problem [7], since the measurement 
estimation is needed. The characterization of all 
statistical knowledge upon this quantity of interest is 
naturally derived by the probability density function 
(pdf) )(m . Moreover, it is well known in practice 

that every observation (in a set of data) does not 
play the same role for determining estimates, tests or  
other statistics. Then, a robust nonlinear regression 
strategy called biased bootstrap [9, 10] is used for 
parameter and measurement estimation in presence 
of outliers. The aim of this article is then to appraise 
the pdf using bootstrap techniques and to compare 
the results with others obtained using a primitive 
Monte Carlo (PMC) technique. In such a problem, 
difficulties are typically encountered when the size of 
the random sample is small (and so asymptotic 
methods do not apply) or more generally when the 
distribution of the statistic cannot be analytically 
expressed. Most of the time, large scale repetition of 
an experiment is not economically feasible, the 
Monte Carlo method can not be used and bootstrap 
methods are proved to be a potentially useful 
alternative. Then, the idea to use bootstrap methods 
to access the pdf )(m  is found to be attractive. 
†
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The bootstrap techniques were introduced by Efron 
[5] and have been mainly developed for the 
estimation of confidence intervals where few data 
are available [4, 6, 11]. Zoubir [15] gives a wide 
application of bootstrap techniques in signal 
processing and its potentially usefulness. The 
characterization of the measurement has been 
introduced for a nonlinear Gaussian framework [1, 
2], the problem of pdf estimation in a more suitable 
or realistic framework (nonlinear non-Gaussian and 
limited observed data) is considered in this paper. 
The section II presents the general problem of 
measurement estimation, the procedure biased 
bootstrap for robust parameter and measurement 
estimation is described jointly with classical 
bootstrap (non-parametric) to assessing uncertainty 
characterization in section III, section IV describes a 
simple variance reduction technique for the classical 
bootstrap procedure. A simple nonlinear parametric 
model is used in section V to qualify the bootstrap 
performance and results, and finally some 
conclusions are given in section VI. 

II. Problem statement

A measurement can be defined as the best way to 
take advantage of the information given by the 
observed data y. The first step of a measurement 
procedure consists in modeling the physical 
phenomenon in concern. Therefore, building a model 
becomes a goal on its own. In many applications, 
unknown quantities m have to be estimated from a 
vector of observed values y. This may be 
encountered in several domains such as non 
destructive testing or so-called indirect 
measurement. It is due to the inability to use 
transducers to measure m directly for any reason of 
harsh environment, long distance or other. 
Measurement systems can be formalized by two 
equations [7] : 

i ). The Observation Equation is described by the 
classical nonlinear regression model : 

niexy iii ,,,,f 1   (1)



Where ix  is an experimental design vector and 

under consideration that function f  is a known 

model of the unknown parameter vector . Some 
fitting technique to estimate  can be used, for 
example nonlinear least squares (NLS), maximum of 
likelihood (ML), M-estimator [12], etc. 

ii ). The Measurement Equation (a nonlinear 
function of the parametric model), 

m g  (2) 

The measurement is usually defined by a functional 
of the parametric model fm  (i.e. 

derivation, integration, interpolation, extrapolation, 
etc.). This relation is then transformed into a function 
of the parameters  such as in equation (2). It is 
supposed that the measurement depends on at least 
one of the parameters 0ktsk g.. . The final 

goal is therefore an accurate statistical 
characterization of the measurement quantity m. 

III. Bootstrap in nonlinear regression and 
measurement

The first goal is then to determine the sampling 
distribution ˆˆ . Efron [5], Freedman [8], Hinkley [11] 

and Wu [14] introduce and discuss many of the 
properties of the classical bootstrap method in 
regression analysis. When assumptions over the 
errors ie  pdf are limited (for example the error 

random variables belong to an iid sequence, but the 
law is unknown), bootstrap techniques can help to 
approximate the errors pdf. These techniques are 
based on resampling a vector of a few observed 
residuals, then a Monte Carlo procedure gives an 
estimation of the parameter pdf, and finally the pdf of 
the measurement can be approximated. The first 
step for estimating the empirical density eˆ  is to 

work with residuals. The residuals are computed on 
the basis of observed data iy  and the proposed 

model f . A fitting technique is used to obtain the 

estimation of . In fact robust nonlinear regression 
deals with outlier accommodation.  To accommodate 
points with large residuals, a biased bootstrap 
technique that assures robustness has been used. 

III.1. Biased bootstrap parameter estimator

A biased bootstrap empirical method proposed in 
[10] is used for robust parameter estimation. Such a 
method identifies and downweights those data 
values that exert undue influence on a statistical 
estimator. The selected weights arise as resampling 
probabilities in a version of the weighted bootstrap 
and lead to a biased version of the uniform 
bootstrap. This approach does not need density 

estimation or the specification of a parametric family 
of distributions. The biased bootstrap requires two 
inputs : a distance measure between the uniform and 
the biased bootstrap distributions, and some 
constraints. The distance measure (e.g. power 
divergence) used, is proposed in [10] and is given by 
D , where  is given by the following 

breakdown function : 
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and is considered that it begins with a fixed value, 
given an initial breakdown point  in the range 

210  (in practical examples it has been 

suggested 150010 .,. ),  is the exponent of 

the power divergence and it varies in the range 
10 , which includes Hellinger and Kullback- 

Leibler distances. The constraints are given by the 
measures of location and dispersion. The 
multivariate location estimation for a given bivariate 
sample ii Y,X , is obtained by equation (4)  : 
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where iw  are the weights and )( ie  can be the 

quadratic norm function (BBQ) : 

2
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or the robust Huber-like norm proposed in [2] and 
given by the following equation (BBH) : 
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where 0  and is a constant value. The measure of 

dispersion is given by : 
n
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The usual empirical distribution is given by the 
uniform bootstrap and considering that all weights 
have the same mass in all data points 

n/,,n/unif 11w . The initial values estimated 

for location and dispersion are given as follows 

unif
ˆˆ w  and unifˆ w , then the level of 

dispersion is calibrated (e.g. minimized) by the 
biased weights (e.g. downweights) iw . The biased 

weights function proposed in [10] is given in the 
following general form : 
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The values given by ˆ,ˆ,ˆ  satisfy the following 

equations : 

1 ) .- criterion minimization ,ˆ 0)(
1
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If the distribution of ie  is symmetric and unimodal, 

the true values of  are not changed by trimming, 
and in the asymmetric case they are altered, 
although they remain well defined as solution of 

p . 

III.2. Parameter pdf estimation

The conventional uniform bootstrap methods can be 
used to approximate the distribution of the biased 
estimator. The simple residuals iê  are therefore 

obtained by using the following expression : 

ˆ,fˆ
iii xye   (9) 

The sample probability distribution of residuals eˆ  is 

then approximated by punctual statistical mass of 
/n1  at each realization of iê . 

The next step is to draw the bootstrap samples *ˆ
ie

and *
iy , given ei ˆ~ê  and ˆ : 

eiiii eexy ˆ~ˆˆˆ,f ***   (10) 

Indeed, ˆ  will be assumed as the true parameters. 

Each realization of *ˆ
ie  yields an estimation of *ˆ  by 

the same minimization process that gave ˆ  for 
example equation (4). 

Repeating B independent bootstrap replications for 
*ˆ  will give a random sample B** ˆ,,ˆ 1 , which can 

be used to estimate the bootstrap distribution of *ˆ

and then the pdf of ˆ  could be approximated by 
*ˆ .  

The bootstrap performance and approximation have 
been considered by working with residuals for both 
Gaussian and non-Gaussian “assumptions”. The 
level of approximation can be improved when some 
different priors are incorporated to the residuals 
vector under symmetric assumptions : 

a) centered residuals, if one of the components of 
 is a translation parameter for the function 

f  then eˆ  has zero mean. If not, eˆ  might 

be still modified by translation to achieve zero 
mean [5, 8], 

b) and modified residuals, bootstrapping modified 
residuals gives a smoothed (or weighted) 
version of residuals that can drive to a consistent 
statistics estimator (e.g. weighted bootstrap)[13].

III.3. Measurement pdf estimation

An extended measurement vector is given by 
T

1 p,,m,,m . It gives the nonlinear 

mapping m G . Once the parameters estimate 
*ˆ  is computed, the measurement induced by the 

mapping G  is given as : 

*ˆGm̂*  (11) 

The measurement pdf mm  is then approximated 

by the bootstrap measurement pdf *m̂m , which 

is induced by Bˆ,,ˆ **1 mm  using the different 

bootstrap replications B** ˆ,,ˆ 1  in the nonlinear 
mapping G . 

IV. Nested bootstrap

In the literature, it is usual to see that the number of 
bootstrap simulation replications B is approximately 
the same value as the sample size n. In parametric 
models with sufficient regularity, asymptotically 
statistics, which have a limiting distribution that does 
not depend on unknown parameters, the bootstrap 
will yield an approximation that is closer to the true 
distribution, in terms of orders of approximation to 
the probability. By nesting the original bootstrap 
within another bootstrap, the approximation error can 
be similarly reduced. In other words, nested 
bootstrap (e.g. simulated bootstrap) can be used to 
further reduce the time of computations. 

To dominate the stochastic error introduced by the 

bootstrap unless 2nB . In a simulated nested 
bootstrap, the number of replications in the inner 



bootstrap requires 2
1 nB , but the number of 

replications in the outer bootstrap must satisfy 
3

2 nB . Thus the total number of replications must 

be 5n  to insure that the simulation stochastic error is 
not so large. This computational requirement can be 
prohibitive even in simple models with moderate 
samples. A control variate approach can therefore be 
implemented for the bootstrap pdf approximation. 
This approach uses a leading term in the asymptotic 
expansion for the statistic of interest and its 
expectation to form a function that has the same 
expectation but smaller variance than the original 
statistic. The number of simulations required in the 
inner loop of nested bootstrap is reduced to nB1 , 

and for the outer loop 2
2 nB . Thus the total 

number of replications required is reduced to 3n . 
Although the computational requirements involved in 
the later modification can be substantial, and it is a 
good improvement over the requirements for a 
standard nested bootstrap. This approach seems to 
give good results, when the underlying distribution of 
the variables of interest is parametrically specified. 
Its extension to semiparametric models, such as 
nonlinear regression and measurement has been 

considered, and where the parameters Tm, . 

A first approach was introduced in [3] for nonlinear 
regression. 

The distribution function of any statistic T  of 

is given by tTET, 1  [3], and 

the function of interest is T,TH 1t , it is 

necessary to assume that T  has a finite sample 

knowledge of a leading term, presented here in its 
Edgeworth expansion form : 

2
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where ;,, nee1  is an approximated 

statistic of T , given the errors random sample 

,ˆˆ~ eie  from its known parameterized density, 

and tt E,F 1  are known up to 

the parameters. The statistic t,F  is pivotal and 

does not depend on  when 1q , then 

tt F,F . The knowledge of T  and 

t,TH  is used to form a control variate that 

eliminates the leading stochastic term in 
t,TH , by simulating the reminder.  

Given  and knowledge of , one generates 
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and its average over the Monte Carlo is : 
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It is required that qknB 1
1  to ensure that Monte 

Carlo error does not dominate. In the outer bootstrap 

2B  replications are necessary, and the function of 

interest is given by T,ˆ
~

T
~

11 B , where 

21
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k
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, and distribution 

function given by 1111 1 tt T
~

E,
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.  

Applying the previous ideas, one defines : 
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and its average over the Monte Carlo is : 
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In general, it is required that qknB 2
2 , then for a 

common case 1qk , nB1  and 2
2 nB  and 

the total replications are 3n . Some restrictions are 
given for the errors pdf assumptions, one needs 
independence of ix , zero mean (symmetry) and 

constant variance. When drawing e
j

ie ˆ~  from its 

empirical distribution, there are complications to find 
t,F , but it should be possible to work out of its 

expectation function by giving a number of additional 
Monte Carlo replications. 

V. Example

Some experimental results based on a nonlinear 
model have been obtained. The goal is to compare 
the asymptotic pdf with the bootstrap approximation 
when hypothesis of either Gaussianity or non-
Gaussianity over the errors has been made. Some 
improvement suggestions have been implemented. 
The nonlinear proposed model is the following one :

ii xx 21tanh,f   

where T1510 ,,,x i and T
0 490182 .,. . The 

observation vector iy  is used to estimate the slope 



at the origin ,x/f 0 , so m can be analytically 

expressed by : 

21gm .  

Then the typical measurement is 068210 .m . To 

evaluate the estimation performance, the probability 
density of m has been derived. Bootstrap 
approximation and PMC asymptotic results 
determine pdf estimations of the parameters and the 
measurement. The results when the hypothesis upon 

20,~ei N , ,~ei 0U  and the mixture  

220 2 ,,~ei UN  (non-Gaussian 

symmetric case) are studied for 51e  PMC 

(asymptotic pdf) vs. different bootstrap replications B

( 062502 .  and ). The finality is to quantify 
the level of approximation produced by the different 
bootstrap schemes. The mean, the bias and the 
variance observed by PMC are presented in contrast 
with best approximations obtained by bootstrap 
(modified residuals) and nested bootstrap (NB), 
when ie  is a mixture noise, see table 1. On the other 

hand, figure 1 shows the asymptotic convergence of 
the bootstrap pdf. The asymptotic PMC reference 
pdf, is used to evaluate the distance between mr

and *m̂m . Some different distance metric 

functions are recommended in [2], the Hellinger 
distance is preferred here : 

212

)( dm
mrmrH

*mm ˆ,

It is used to figure the level of the bootstrap 
approximation versus the PMC asymptotic pdf. 

Fig. 1. Distance between pdf approximated by 
bootstrap (modified residuals) and asymptotic PMC 
reference pdf for a measurement in symmetric noise 
assumptions. 

Robust estimation using the biased bootstrap idea is 
presented. In this case, the assumptions of the noise 
are ,~ei 0U  plus outliers. The figure 2 depicts 

the obtained results, when the quadratic norm (BBQ) 
and the Huber-like norm (BBH) are used. The NLS 
estimator gives the poorest approximation in the 
fitting sense. The values for ,,  and  were 

0.25, 1, 0.25 and 0.0165 respectively. 

Table 1. Bootstrap and Nested Bootstrap vs. PMC 
statistics for  and m , using the NLS estimator. 

Mean 1 Bias 1  Var. 1

PMC 1e 5 2.1835 0.0035 0.0059 
BOOT 3000 2.1832 0.0032 0.0058 
BOOT 5000 2.1831 0.0031 0.0056 

Mean 2 Bias 2  Var. 2

PMC 1e 5 0.5064 0.0164 0.0123 
BOOT 3000 0.5056 0.0156 0.0111 
BOOT 5000 0.5062 0.0162 0.0112 

Mean m Bias m  Var. m

PMC 1e 5 1.1020 0.0338 0.0511 
BOOT 3000 1.1007 0.0325 0.0464 
BOOT 5000 1.1019 0.0337 0.0471 
 n = 12    
NB 1728 1.0948 0.0266 0.0432 
 n = 16    
NB 4096 1.1055 0.0373 0.0482 

Fig. 2. Comparison between the different parameter 
estimators using their mean estimation value. Data 
generation Model (—), Data corrupted by uniform 
noise and outliers ( ), PMC – NLS (—+), PMC – 
BBH (- -), Bootstrap – BBQ (---) and Bootstrap – 
BBH ( ). 

The figure 3 shows the different approximated pdfs, 
one can see that the best estimator in the 
measurement sense is the BBH, the typical 
measurement is the reference. Finally, table 2 
presents some estimated statistics for the 
measurement, given by the different estimators 
previously compared. 



Table 2. Measurement statistics, using the different 
estimators. 

1.0682mr Mean m  Bias m  Var. m

PMC – NLS 1.5367 0.4685 0.0115 
PMC – BBH 1.2813 0.2131 0.0049 
Boot – BBQ 1.2678 0.1996 0.5257 
Boot – BBH 1.0467 0.0215 0.6617 

Fig. 3. Comparison between the measurement of 
reference (—) and the different estimated 
histograms : PMC – NLS (a), PMC – BBH (b), 
Bootstrap – BBQ (c) and Bootstrap – BBH (d). 

VI. Conclusions

The bootstrap results are very close to the PMC 
asymptotic results. Moreover, they could be 
improved using prior information on the residuals in a 
correct way. It must be important to control the 
bootstrap application in a careful way. Under 
Gaussian and non-Gaussian assumptions, the 
bootstrap gives a good approximation of the 
measurement pdf; it still works in the case of robust 
estimation. With a minimal number of iterations, the 
bootstrap approximation is very close to the PMC 
asymptotic estimation. The nested bootstrap, as a 
variance reduction technique, significantly reduces 
the number of iterations, but the variance is poorly 
reduced, and the only restrictions are the noise pdf 
symmetry assumption. 
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