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Many Ambient Intelligence (Aml) systems rely on automatic human activity recognition for getting cru-
cial context information, so that they can provide personalized services based on the current users’ state.
Activity recognition provides core functionality to many types of systems including: Ambient Assisted
Living, fitness trackers, behavior monitoring, security, and so on. The advent of wearable devices along
with their diverse set of embedded sensors opens new opportunities for ubiquitous context sensing. Re-
cently, wearable devices such as smartphones and smart-watches have been used for activity recognition
and monitoring. Most of the previous works use inertial sensors (accelerometers, gyroscopes) for activity
recognition and combine them using an aggregation approach, i.e., extract features from each sensor and
aggregate them to build the final classification model. This is not optimal since each sensor data source
has its own statistical properties. In this work, we propose the use of a multi-view stacking method to
fuse the data from heterogeneous types of sensors for activity recognition. Specifically, we used sound
and accelerometer data collected with a smartphone and a wrist-band while performing home task ac-
tivities. The proposed method is based on multi-view learning and stacked generalization, and consists
of training a model for each of the sensor views and combining them with stacking. Our experimental
results showed that the multi-view stacking method outperformed the aggregation approach in terms of
accuracy, recall and specificity.
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1. Introduction

Ambient Intelligence (Aml) [1] is an emerging discipline that
brings intelligence to our everyday environments by adapting
those environments to our needs [1], making them aware of the
context [2]. It builds upon advances in sensors, pervasive comput-
ing, and artificial intelligence. AmI technologies should be sensi-
tive, responsive, adaptive, transparent, ubiquitous, and intelligent.
In an Aml environment, devices are expected to work collectively
by sharing information and using the history of past events. The
Aml vision puts lighting, sound, vision, domestic appliances, and
personal health care products to cooperate seamlessly in order to
help the user [3].

Several of these systems are based on Human Activity Recog-
nition (HAR) since knowing the current activity is of great im-
portance to understand the users’ context. Following Dey’s notion
of context [4], the user’s task is one of its key elements. This is
why HAR research has received great interest recently [5-13]. Be-
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ing able to detect the activities being performed by an individual
can provide valuable information in the process of understanding
the context and situation in a given environment, so it is of great
interest because of the wide range of possible applications such as
in medicine, Ambient-Assisted Living [14], sports, marketing [15],
surveillance [16], etc.

Data from several sources is collected and then analyzed to ex-
tract useful context information in many HAR applications, and
some works have explored the combination of different types of
sensors for activity recognition [5-7]. However, most of them use
an aggregation approach, i.e., extract features from each sensor and
aggregate them to train a predictive model. Aggregation is not op-
timal since each sensors’ data have their own statistical properties
[17] and combining them in the same model can confound them.
In this paper, we present a method based on multi-view learn-
ing and stacked generalization for fusing audio and accelerome-
ter sensor data for human activity recognition using wearable de-
vices. We treat each sensor’s data as different views and then, they
are combined using stacked generalization [18]. The proposed ap-
proach is flexible since it does not rely on a specific classification
model and is efficient in terms of memory and computation since
it only requires to train a classifier for each sensor type and an ex-
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tra meta-classifier. We evaluated the multi-view stacking approach
for home tasks activity recognition using sound and accelerometer
data collected with a smartphone and a wrist-band. Furthermore,
we evaluated the proposed method with other three multi modal
HAR datasets.

This document is organized as follows: Section 2 presents an
overview of activity recognition and sensor fusion methods that
have been used. This Section also presents the background on
multi-view learning and stacked generalization. In Section 3 we ex-
plain how stacked generalization is used in the context of multi-
view learning for activity recognition. Section 4 details the ac-
celerometer/audio data collection process. In Section 5 we explain
the feature extraction process for the audio and accelerometer
data. Next, in Section 6 the experiments and results are presented
and finally in Section 7 we draw the conclusions.

2. Related work and background

There are two main types of sensors that have been used for
Human Activity Recognition: external sensors and wearable sensors.
External sensors are installed in the environment and may not
have direct physical contact with the user. Examples of such sen-
sors are: video cameras, microphones, motion sensors, depth cam-
eras like the Microsoft Kinect, RFID tags, switches, etc. On the
other hand, wearable sensors are carried by the user or are em-
bedded in devices such as smartphones, smartwatches and fitness
bracelets. Examples of wearable sensors are: accelerometers, gyro-
scopes, magnetometers, to name a few.

Automatic activity recognition systems have been successfully
developed using external sensors such as video cameras [19-
21] and color-depth cameras [8,9]. With the recent advent of
smartphones and wearable devices such as smart-watches and fit-
ness bands, it is now possible to collect data from their different
sensors without the need of a fixed infrastructure. Recently, the
sensors embedded in those type of devices have been used for hu-
man activity recognition given their flexibility, ubiquity and unob-
trusiveness. Often, inertial sensors (accelerometers and gyroscopes)
are used for HAR tasks, albeit other types of sensors like micro-
phones, light sensors, temperature, heart rate, etc. are also embed-
ded in those type of wearable devices. The use of wearable sensors
[22] has gained a lot of attention because they have several advan-
tages; in particular, the recognition can be performed in any place
unlike video cameras in which it is restricted to a specific area.
Another problem of external sensors is that in environments with
multiple residents it becomes difficult to detect which person acti-
vated a specific sensor. This is not a problem for wearable sensors
since they are personal. Yet other problems of external sensors are
related to privacy issues, because the user does not decide if s/he
is going to be monitored.

A common recent trend is to use smartphones for HAR since
they are immensely popular and they already have several types
of embedded sensors. Another advantage is that all the process-
ing can be performed inside the phone so there is no need to
carry another processing unit. One of the first works to perform all
the recognition inside a phone was the one of Brezmes et al. [23].
There are also other works that have used smartphones for activity
recognition [10-13]. Given the advantages of wearable sensors, in
this work we focus on this type of systems. Specifically, we used a
smartphone and a wrist-band to perform the recognition.

2.1. Sensor fusion in activity recognition

With the increasing miniaturization of sensors, it is now com-
mon to find many types of them in our environment, especially
in wearable devices. Given their ubiquity and sensing capabilities,

a wide range of physical phenomena can be measured, thus, gen-
erating large quantities of diverse data types. These data can be
used to extract contextual information from the environment al-
lowing the realization of reactive systems based on the current
inferred state. Combining the diverse sources of data in an intel-
ligent manner in order to generate knowledge and extract useful
information has been an active research area [24]. In multimedia
analysis, it is common to have different sensing modalities such as
video, audio, text, WWW resources, etc. and the fusion of the mul-
tiple sources can increase the accuracy of the system [25]. In medi-
cal image analysis, the fusion of different imaging modalities (MRI,
Ultrasound, CT, PET, SPECT) can produce improved results [26]. For
human activity recognition, the most common approach is to use
inertial sensors (accelerometers, gyroscopes, tilt switches, etc.) due
to their flexibility and infrastructureless capabilities; however, ex-
ternal sensors (cameras, switches, motion sensors, RFID) are also
used, mainly in smart environments.

In the work of Tolstikov et al. [27] Dynamic Bayesian Networks
and Dempster-Shafer theory are used to fuse sensor data in order
to recognize seven activities of daily living using 14 binary sensors
placed around a house. Their results suggest that both methods
are similar in terms of performance. Amoretti et al. [28] also used
Bayesian Networks to monitor activities for ambient assisted liv-
ing in a smart environment. In wearable sensor settings, the most
common approach of sensor fusion is aggregation, i.e., concatenate
the extracted features from all sensors and train a single classifica-
tion model with them. Shoaib et al. [5] explored the use of smart-
phones’ accelerometers and gyroscopes tested individually and in
combination for activity recognition. They used an aggregation ap-
proach and found that the combination of both sensors improved
the overall performance when the individual performances are not
very high. In a later work [6] of the same authors (Shoaib et al.)
they combined smartphone and wrist-worn inertial sensors by ag-
gregation and-again- obtaining better results when fusing both
devices. Dernbach et al. [7] also conducted experiments with ac-
celerometer and gyroscope sensors and also concluded that com-
bining information from both sensors (by aggregation) increased
the system performance by 10-12% accuracy. In a similar work,
Hayashi et al. [29] also used an aggregation of accelerometer and
sound data to classify daily activities achieving better results when
using both sources of information.

Even though it has been shown that combining multiple
sources of data can increase the system accuracy, aggregation
is not optimal since each sensor has its own statistical proper-
ties [17] which may require a different treatment. Zhu & Sheng
[30] used a multi-sensor fusion scheme for combining sensors at-
tached to the foot and waist. They trained two different neural
networks for each of the sensors to recognize coarse-grained ac-
tivities. Then, the outputs of the neural networks are fused using
manually defined rules. These rules dictate if the fine-grained ac-
tivity classification should be performed by heuristic discrimina-
tion or a Hidden Markov Model. By training two different neural
networks they are able to preserve the statistical properties of each
sensor unit; however, the manual definition of rules becomes hard
when increasing the number of activities, thus, limiting the scal-
ability of the approach. Another sensor fusion method was pro-
posed by Banos et al. [31] whose aim is to be robust against hard-
ware failures. Their proposed classifier is trained in a hierarchi-
cal fashion by first generating m x n binary classifiers where m
is the number of sensors and n the number of classes, i.e., n bi-
nary classifiers for each sensor. Then, these classifiers are weighted
and aggregated with a particular function for each sensor which
corresponds to the second level classifiers. Finally, the decisions
of the second level classifiers are weighted and combined to pro-
duce the final prediction. This method proved to be very robust
in the presence of sensor failures by combining information of the
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Table 1
Related work.

Fusion method

Reference Type of sensors  Data sources

Tolstikov et al. [27] external binary sensors

Amoretti et al. [28] external time-of-flight cameras, intelligent carpets, accelerometers
Shoaib et al. [5] wearable accelerometers, gyroscopes

Shoaib et al. [6] wearable wrist-worn and smartphone sensors
Dernbach et al. [7] wearable accelerometers, gyroscopes

Hayashi et al. [29] wearable accelerometers, sound

Zhu & Sheng [30] wearable inertial sensors in waist and foot
Banos et al. [31] wearable bi-axial accelerometers

Nishida et al. [32] wearable accelerometers, sound

This work. wearable accelerometer, sound

Dynamic Bayesian Networks and Dempster-Shafer theory.
Bayesian Networks

Aggregation

Aggregation

Aggregation

Aggregation

Decision rules

Hierarchical weighted classifier

Gaussian Mixture Models Weighting

Multi-View Stacking

available working sensors, however, it requires a large number of
classifiers. Nishida et al. [32] conducted experiments to recognize
human activities using smartphone accelerometer data and sound
recorded with a camera. They trained two Gaussian Mixture Mod-
els and evaluated different weights for the accelerometer data in
order to vary its importance. The limitation of this approach is that
it requires to find an additional weighting parameter and the num-
ber of mixtures to use. Table 1 presents a summary of representa-
tive activity recognition works classified by type of sensors, data
sources and sensor fusion method.

This work differs from the previous ones in the following as-
pects: Firstly, it combines the data from heterogeneous types of
sensors to complement each other and thus, increase recognition
accuracy. Secondly, it is efficient in terms on the number of mod-
els to be trained since it only requires a classifier for each sen-
sor and a meta-classifier; in comparison to other approaches like
in [31] which requires to train a model for each class and for
each sensor. Thirdly, it is flexible in the choice of classifiers, i.e.,
it can potentially include combinations of different types of mod-
els (this will be left as future work). Fourthly, we used a combina-
tion of wearable devices (smartphone and wrist-band) which are
commonly used by many people in their everyday life, thus, reduc-
ing obtrusiveness issues. Finally, it is based on extensively studied
machine learning methods namely: multi-view learning and stacked
generalization which are detailed in the following sections.

2.2. Multi-view learning

It is not unusual to have applications in which each observation
can be represented by different sets of features or 'views’. For ex-
ample, a video can be represented by the information contained in
its sequence of images but also in the audio itself. A web-page can
be characterized by the text contained within it but also by the hy-
perlinks pointing to that page. For machine learning tasks, features
from the different views can be simply aggregated to learn a given
model. This approach might not be optimal since each view has its
own statistical properties [17]. Another paradigm called Multi-view
learning deals with the problem of learning a model based on the
different views of the data [33,34]. One of the earliest works in
this direction is the one of Blum & Mitchell [35] which was devel-
oped for semi-supervised learning tasks [36], i.e., when there are
large amounts of unlabeled instances. They considered the problem
of web-page classification with two views: the text in the web-
page and the hyperlinks pointing to it. Their co-training method
consists of initially training two independent classifiers (one for
each view) and then perform several iterations. In each iteration,
one of the classifiers labels a subset of the unlabeled instances
and the instances with the most confident predictions are added
as training data to the other classifier and vice versa. In this way,
the classifiers help each other by augmenting their training set to
make use of the unlabeled data. This approach assumes that each
view is sufficient to train a good classifier and that both views

are conditionally independent given the class. Zhou & Li relaxed
those assumptions by introducing a tri-training method which uses
three classifiers [37]. Sometimes, the data cannot be naturally rep-
resented by different views and thus, some approaches aim to syn-
thetically construct the different representations [38,39]. The pre-
vious mentioned works were developed in the context of semi-
supervised learning. To a lesser extent, there have also been works
in multi-view learning for supervised learning. For example, Far-
quhar et al. [40] proposed a method that combines kernel Canoni-
cal Correlation Analysis and a Support Vector Machine for image
classification obtaining accuracy improvements compared to us-
ing individual SVMs. Diethe et al. [41] extended Fisher discrimi-
nant analysis classification to the multi-view case and later, Chen
& Sun proposed a hierarchical multi-view Fisher discriminant anal-
ysis method [42]. In a recent work, Wang et al. [43] proposed a
linear multi-view classifier based on intact feature vectors. The ap-
proach assumes that the different views of an observation are gen-
erated from one single intact vector which is recovered guiding the
search using label information.

In this work we will consider two different representations of
the activities from different sources, namely: accelerometer and
audio sensors. We will use a multi-view learning approach by con-
sidering each source of information independent of the other and
fusing them using Stacked Generalization which is described in the
next section and the proposed multi-view stacking method is de-
tailed in Section 3.

2.3. Stacked generalization

The concept of stacked generalization (also called stacking) was
introduced by Wolpert (1992) [18] and is a type of ensemble
method for combining multiple learners. The method consists of
training a set of learners (called the first-level learners) with the
original training data. The outputs of the first-level learners are
then used to train a second-level learner called the meta-learner.
For a basic introduction to ensemble learning and stacking see a
textbook like Kubat's one [44] and Zhou [45]. The overall proce-
dure comprises the following steps:

1. Define a set . of first-level learners and a meta-learner.

2. Train the first-level learners in .# using the original training
data D which contains n instances.

3. Predict the labels of D with each of the learners in .#; each of
the |.#| learners gives a prediction vector p of n elements.

4. Form a new matrix My, by column binding the prediction
vectors and the true labels y to produce the new training data
D/

5. Train the meta-learner with D’

6. Output the final stacking model S :< .#, meta-learner >.

Fig. 1 shows the procedure to generate the new training data
D’ for the meta-learner.
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Fig. 1. Depiction of the process to produce the new training data D’ for the meta-
learner by column-binding the predictions of the learners in % and the true labels
y.

In steps 2 and 3, there is a high risk of over-fitting since the
predictions are made with the same data used to train the mod-
els. To avoid this, steps 2 and 3 are usually performed using k-fold
cross validation. After D’ has been generated, the learners in .# are
retrained using all instances in D.

In the original work of Wolpert [18], stacked generalization was
used for classification and surface-fitting. Later, it was also used for
regression by stacking regression trees [46] and for unsupervised
learning to estimate densities [47]. In the context of classifications
tasks, Ting & Witten [48] showed that adding confidence informa-
tion about the predictions for the meta-learner can lead to better
classification results. In this work (Section 3) we will use stacked
generalization as a means to fuse the different activities’ views in
order to generate the final classifier.

3. Multi-view stacking

The proposed multi-view stacking classification approach con-
sists of training one first-level learner for each view and com-
bining their outputs using stacked generalization; in our case one
view will comprise the information coming from the accelerom-
eters, and the other one coming from the sound. The base clas-
sifiers for each of the views will take as data the set of features
resulting from either accelerometers or sound (see Section 5). The
dataset D’ that will serve to train the meta-learner is generated
by column binding the outputs of each of the first-level learners
and the true labels y. These outputs consist of the predicted labels
and the associated predicted probabilities for each of the k pos-
sible classes. The output probabilities of the first-level learners are
averaged. Thus, the final feature vectors have size |.#| + k + 1, with
the form [k, ... L, ... | %, P1, ... Dis -» Pk, ¥] where [; is the predicted
label of each first-level learner, p; are the averaged probabilities for
each possible class k and y is the true label.

In Stacked Generalization, algorithms that in general pro-
duce high performance results are used as first-level learners
such as neural networks, Support Vector Machines (SVMs), Ran-
dom Forests, etc. For our experiments, we used Random Forests
[49] since they have been shown to produce good overall results
[50] and in particular, they have also proven to outperform other
classifiers in HAR tasks [51-54]. In the work of Casale et al. [51],
Random Forest outperformed decision tree, Bagging and Boosting
classifiers in recognizing five different activities individually and
overall. Weiss and Lockhart [52] tested 8 different classification
algorithms for HAR including: Naive Bayes, Neural Networks, in-
stance based learning, among others, and on average, Random For-
est produced the best results. Nguyen et al. [53] experimented
with several classifiers for HAR, including k-NN and SVM and they
reported that Random Forest consistently achieved the best results.
In the work of Galvan-Tejada et al. [54], they used sound data
for HAR and obtained the best results when using Random Forest
compared to Neural Networks.

As opposed to other multi-view learning algorithms that are
tied to a specific learner, stacked generalization has the advantage
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Fig. 2. Data collection cellphone application.

that any type of models can be used as a first-level learners and
meta-learners, providing more flexibility for implementation. Of-
ten, heterogeneous types of first-level learners are used, thus, pro-
viding more diversity and adaptation for each of the views, e.g.,
an optimization method can be used to select the subset of best
learners for the given task [55]. In order to make the compari-
son between only audio, only accelerometer, aggregated data and
multi-view stacking as fair as possible, we used for all cases ran-
dom forest as the first-level learners and also as the meta-learner
(see Section 6).

4. Data collection

For our home tasks activities dataset, the sound and accelerom-
eter data were collected by 3 volunteers while performing 7 dif-
ferent activities: mop floor, sweep floor, type on computer keyboard,
brush teeth, wash hands, eat chips and watch t.v.. Each volunteer
performed each activity for approximately 3 min. If the activity
lasted less than 3 min, another session was recorded until com-
pleting the 3 min. The data were collected with a wrist-band (Mi-
crosoft Band 2) and a cellphone. The wrist-band was used to col-
lect accelerometer data and was worn by the volunteers in their
dominant hand. The accelerometer sensor returns values from the
X, y and z axes and the sampling rate was set to 31 Hz. The cell-
phone was used to record environmental sound with a sampling
rate of 8000 Hz and it was placed on a table in the same room the
user was performing the activity. An application for the Android
operating system was developed to collect the data (Fig. 2). The
application has a dropdown list from which the users can select
the activity and a chart to display the accelerometer magnitude
while recording. The wrist-band sends the sensor readings and a
timestamp via Bluetooth to the cellphone and they are stored as
text files.



E. Garcia-Ceja et al./Information Fusion 40 (2018) 45-56 49

l-.- ---.-- l- .

-1 -08 -06-04-02 0 02 04 06 08 1

a) concatenated MFCCs

-1 -08 -06-04-02 0 02 04 06 08 1

b) averaged MFCCs

Fig. 3. Correlations between audio features: a) concatenated MFCCs b) averaged MFCCs.

5. Feature extraction

The feature extraction process consists of computing represen-
tative measures from the original signal in order to have a more
compact representation while still preserving its discriminative
characteristics. The original accelerometer and audio signals were
segmented into fixed length windows of 3 s each, with no over-
lap since according to Banos et al. [56] this is the typical value
for activity recognition systems, and in their extensive evaluation
of different window lengths, they showed that small window sizes
lead to better results than using longer window sizes. Characteris-
tic measures (features) are then computed for each window seg-
ment. The resulting set of features for each segment is referred to
as feature vector or an instance. Each instance will be represented
by two sets of features corresponding to the different views: The
acceleration view and the sound view. Next, we describe the ex-
tracted features from both, accelerometer and audio signals.

5.1. Accelerometer features

From the raw accelerometer signals, 16 features were extracted:
The mean value of each of the 3 axes, the standard deviation of each
of the 3 axes, the max value of each of the 3 axes, the correlation
between each pair of axes, the mean magnitude, the standard devia-
tion of the magnitude, the magnitude area under the curve (AUC, Eq.
(1)), and magnitude mean differences between consecutive readings
(Eqg. (2)). The magnitude of the signal represents the overall contri-
bution of acceleration of the 3 axes (Eq. (3)). These type of features
were chosen because they have shown to produce good results for
activity recognition tasks [7,57,58].

T
AUC =" magnitude(t) (1)
t=1
1 T
meandif = —— Z magnitude(t) — magnitude(t — 1) (2)
T-1 =
Magnitude(x,y, z,t) = \/ax(t)z + ay(t)2 +ay(t)?, 3)

where ax(t)?, ay(t)* and a,(t)? are the squared accelerations at time
t and T is the last time interval.

Table 2

Distribution of activities by class.
Class Proportion
Brush teeth 12.98%
Eat chips 20.34%
Mop floor 13.05%
Sweep 12.84%
Type on keyboard  12.91%
Wash hands 12.98%
Watch t.v. 14.90%

5.2. Audio features

To characterize each audio signal, we extracted their Mel Fre-
quency Cepstral Coefficients (MFCCs) since they have proven to
produce good results for activity recognition [29,32,54,59].

Each 3 s audio segment was divided into three 1 s sub-
segments. From each 1 s sub-segment, 12 Mel Frequency Cepstral
Coefficients (MFCCs) were computed, thus, resulting in a total of
36 MFCCs. The total number of instances were 1386 of 3 s each.
The computation was performed using the R tuneR package [60].
One way to get the final feature vector of the entire 3 s segment is
to concatenate the MFCCs but doing so may result in highly corre-
lated features, i.e., coefficient 1 will be highly correlated with coef-
ficient 13, 2 with 14 and so on. Fig. 3-a shows the correlations plot
when concatenating the MFCCs. Here, we can see many correla-
tion patterns (the blue diagonal lines). When building classification
models, it is desirable to avoid highly correlated features. In order
to avoid this correlations, we opted to average the MFCCs instead
of concatenating them. Fig. 3-b shows the correlations plot when
averaging the MFCCs. Here we can see that there are no visible
strong correlation patterns as before. Another advantage of averag-
ing is that the total number of features is reduced from 36 to just
12.

All the features were normalized between [0 — 1], inclusive.
Table 2 shows the distribution by class. Here, we can see that there
is no considerable class imbalance.

To visualize how well the features of the two views (accelerom-
eter and sound) can discriminate between classes, their first 3 co-
ordinates after applying a multidimensional scaling (MDS) transfor-
mation [61] were plotted (Fig. 4). We also plotted the coordinates
when aggregating the features of both views. The accelerometer
view seems to have more compact and defined groups than the
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Fig. 4. Multidimensional scaling for the different views.

audio view. For example, the watch tv activity (yellow) seems to
form a single group in the accelerometer view, whereas in the au-
dio view it looks more fragmented. When aggregating both views,
distinguishable groups can be identified, specially the watch tv,
wash hands and type on keyboard activities. This exploratory anal-
ysis suggests that these features have the potential to capture the
discriminative information of the different activities.

6. Experiments and results

To evaluate the proposed multi-view stacking approach for ac-
tivity classification, four different configurations were considered
for our home tasks activities dataset:

o Audio view. Perform the classification with just audio features.
o Accelerometer view. Perform the classification with just ac-
celerometer features.

Table 3
Performance metrics results for home tasks dataset. Average (standard de-
viation).

Accuracy Recall

0.838 (0.019)  0.836 (0.021)
0.854 (0.024)  0.844 (0.022)
0.921 (0.026)  0.915 (0.031)
0.941 (0.024)  0.939 (0.027)

Specificity

0.972 (0.003)
0.975 (0.004)
0.986 (0.004)
0.990 (0.004)

Audio view
Accelerometer view
Aggregated views
Multi-View Stacking

o Aggregated views. Perform the classification by concatenating
both, audio and accelerometer features.

o Multi-View Stacking. Perform the classification using the pro-
posed approach by building individual models for each view
and combining them using stacked generalization.

A random forest classifier was used for the four configurations.
10 fold cross validation was used to evaluate each configuration
and the averaged performance metrics were reported. For multi-
view stacking, 10 fold cross validation was used on the training
data to build the dataset D’ for the meta-learner. The reason to
perform k-fold cross validation to generate the predictions is to
avoid overfitting the training data D’. At the end, in order to build
the final stacked model S, the .# learners are retrained with all
the training data D.

The following performance metrics for each configuration were
computed:

e Accuracy: This refers to the proportion of correctly classified in-
stances.

o Sensitivity or recall (true positive rate): The proportion of posi-
tives that are correctly classified as such.

e Specificity (true negative rate): The proportion of negatives that
are correctly classified as such.

Table 3 shows the results for each configuration and metric.
Here, we can see that the accelerometer performed better than
the audio and the performance was boosted when aggregating
both views, specially in terms of accuracy and recall. The best
performance was achieved with the proposed multi-view stack-
ing method for the three metrics. Fig. 5 shows the resulting box-
plots for the accuracy, recall and specificity between multi-view
stacking and aggregated views. Clearly, the performance of multi-
view stacking outperformed the approach of just aggregating all
the views’ features. A Wilcoxon signed rank test was used to test
for statistically significant increase with o = 0.05. Table 4 shows
the tests’ results. In all cases the difference was statistically signif-
icant.
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Fig. 5. Home tasks dataset boxplots (* statistically significant).
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Table 4

Wilcoxon signed rank test results
between multi-view stacking and
aggregated views.

Performance metric  p-value
Accuracy 0.01
Recall 0.005
Specificity 0.005

Fig. 6 shows the resulting confusion matrices (in percentages).
The antidiagonal of the matrices represents the recall of each in-
dividual activity. The multi-view stacking had a recall increase for
all activities with respect to aggregated views except for the type
on keyboard activity. The audio features were better at detecting
the watch t.v., brush teeth and mop floor activities whereas the ac-
celerometer features were better at detecting eat chips, wash hands
and type on keyboard. For all configurations, the greatest error was
between the sweep and mop floor activities.

6.1. Other datasets

To test the applicability of the proposed approach in differ-
ent scenarios, we conducted experiments with other HAR datasets
with similar characteristics (with an accelerometer in the wrist
complemented with other sensors). For the purpose of compari-

son, the same set of features were extracted for all inertial sensors
(see Section 5.1) and the same set of features were extracted for all
audio sources (see Section 5.2). For datasets containing 3D skele-
ton data representations, the features were extracted by computing
the distance between a reference joint point (the spine) and every
other joint point for each frame [62] and taking the mean, max and
min values across all time frames.

6.1.1. Berkeley MHAD dataset

The Berkeley MHAD dataset [63] consists of temporally syn-
chronized and geometrically calibrated data from microphones, ac-
celerometers, an optical motion capture system, multiple stereo
cameras and depth sensors. The aim of this database is to pro-
vide researchers a benchmark to test new algorithms across mul-
tiple modalities. The data was captured by 12 subjects and con-
tains 11 actions. All participants performed 5 repetitions for each
action which are: 1-jumping in place, 2-jumping jacks, 3-bending,
4-punching, 5-waving two hands, 6-waving one hand, 7-clapping,
8-throwing a ball, 9-sit/stand up, 10-sit down and 11-stand up.
The total number of recordings were 660. Due to some miss-
ing sensor data, 2 recordings were lost yielding a total of 658
instances. For our experiments we considered 3 different views:
wrist-acceleration, audio and 3D skeleton points which are ob-
tained from the video motion capture systems. Table 5 shows the
obtained results for each of the 3 views independently, aggregated
and with multi-view stacking. This table also presents the results
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Table 5
Performance metrics results for Berkeley MHAD dataset. Average (standard deviation).
Accuracy Recall Specificity
Audio view 0.682 (0.063)  0.698 (0.074) 0.968 (0.006)
Accelerometer view 0.954 (0.031) 0.957 (0.031) 0.995 (0.003)
Skeleton view 0.960 (0.027)  0.963 (0.024) 0.996 (0.002)

Aggregated views
Multi-View Stacking
Reported in original work of Ofli et al. [63]

0.987 (0.013)
0.995 (0.007)

0.987 (0.016)

0.995 (0.007)
Accuracies from 0.938 (motion capture + depth data), 0.974 (motion capture + acc + audio), 1.0 (all sensors).

0.998 (0.001)
0.999 (0.0007)

Table 6
Performance metrics results for UTD-MHAD dataset. Average (standard deviation).
Accuracy Recall Specificity

Accelerometer view 0.902 (0.034)  0.907 (0.034) 0.996 (0.001)
Gyroscope view 0.852 (0.039)  0.857 (0.050) 0.994 (0.001)
Skeleton view 0.909 (0.046)  0.917 (0.044) 0.996 (0.001)
Aggregated views 0.975 (0.017) 0.975 (0.022) 0.999 (0.0006)
Multi-View Stacking 0.981 (0.016)  0.984 (0.015)  0.999 (0.0006)

Reported in original work of Chen et al. [64], [65]

Accuracy 0.791 [64], and 0.972 [65]
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Fig. 7. Berkeley MHAD dataset boxplots (* statistically significant).

obtained in the original work. Here, we can see that the best per-
formance was achieved with multi-view stacking. In the original
work, Ofli et al. [63] reported an accuracy of 0.974 when using
the same set of sensors (motion capture + accelerometer + audio)
compared with the 0.995 accuracy that we obtained. In the origi-
nal work, they achieved a 1.0 accuracy when combining all sensors
which is very close to the 0.995 accuracy we achieved but just us-
ing data from motion capture, audio and the right wrist accelerom-
eter.

Fig. 7 shows the resulting boxplots for the performance metrics.
For the three cases, the increased performance of multi-view stack-
ing compared with aggregating views was statistically significant.
Fig. 8 shows the resulting confusion matrices for each view, aggre-
gated views and multi-view stacking. From these matrices, we can
see that the recall (anti-diagonal) of all activities was >= for multi-
view stacking compared with aggregated views. Next, we present
our results with another multi modal dataset.

6.1.2. UTD-MHAD dataset

The UTD-MHAD database [64] was collected using a Microsoft
Kinect camera and a wearable inertial sensor with 3-axis ac-
celerometer and a 3-axis gyroscope. The database has 27 actions
performed by 8 subjects with 4 repetitions per action. Since there
were 3 corrupted sequences, the total number of instances were

861. The actions include: 1-swipe left, 2-swipe right, 3-wave, 4-
clap, 5-throw, 6-arm cross, 7-basketball shoot, 8-draw x, 9-draw
circle CW, 10-draw circle CCW, 11-draw triangle, 12-bowling, 13-
boxing, 14-baseball swing, 15-tennis swing, 16-arm curl, 17-tennis
serve, 18-push, 19-knock, 20-catch, 21-pickup throw, 22-jog, 23-
walk, 24-sit 2 stand, 25-stand 2 sit, 26-lunge and 27-squat. For
activities 1-21, the inertial sensor was placed on the right wrist
and for activities 22-27, it was placed on the right thigh. For our
experiments, we considered three different views: the accelerom-
eter, gyroscope and the skeleton produced by the Kinect sensor.
Table 6 shows the obtained results. Again, the best accuracies
were obtained with the multi-view stacking method. In the orig-
inal work, the authors achieved an accuracy of 0.791 [64] and in a
follow up work [65] they achieved an accuracy of 0.972 whereas
the multi-view stacking had an accuracy of 0.981. Fig. 9 shows
the resulting boxplots in which we can see that the performance
of multi-view stacking was higher than that of aggregated views,
though, not statistically significant. Fig. 10 shows the correspond-
ing confusion matrices.

6.1.3. Opportunity dataset

This dataset consists of daily activities recorded with multi
modal sensors [66]. The available database [67] contains record-
ings captured by 4 subjects. We considered the four locomotion
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Fig. 9. UTD-MHAD dataset boxplots (* statistically significant).

activities included in the database: 1-stand, 2-walk, 3-sit and 4-
lie. The total number of instances is 2477. We used the right wrist
accelerometer, gyroscope and magnetometer as the three different
views. Table 7 shows the results. In this case, multi-view stacking
had the highest performance and also outperformed the accuracy
reported in Sagha et al. [68]. Figs. 11 and 12 depict the resulting
boxplots and confusion matrices.

From the experiments performed in our home tasks dataset and
the other 3 benchmark datasets, we can see a similar behaviour:

Table 7
Performance metrics results for Opportunity dataset. Average (standard deviation).
Accuracy Recall Specificity
Accelerometer view 0.843 (0.037) 0.790 (0.066) 0.925 (0.016)
Gyroscope view 0.821 (0.025) 0.692 (0.043) 0.914 (0.011)
Magnetometer view 0.889 (0.024) 0.855 (0.051) 0.948 (0.012)

Aggregated views
Multi-View Stacking

Reported in Sagha et al. [68]

0.914 (0.020)
0.925 (0.026)

0.862 (0.036)
0.905 (0.043)

0.957 (0.009)
0.965 (0.011)

Average accuracy of 0.83
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Fig. 11. Opportunity dataset boxplots (* statistically significant).

The performance metrics are higher when combining the different trices can also be observed across the different datasets. The anti-
sensor views compared to using each sensor view independently. diagonal of the multi-view stacking confusion matrix has higher
Furthermore, multi-view stacking produced better results than the recall values than the other confusion matrices.

aggregated views approach. A similar trend on the confusion ma-



E. Garcia-Ceja et al./Information Fusion 40 (2018) 45-56 55

accelerometer view

gyroscope view

magnetometer view

Lie - Lie - Lie -
% K] K]
N [ [
Q Sit - e} it = Qo it =
© o] Sit g Sit
— - -
3 3 3
o 5 °
B Walk- B Walk- B Walk-
— — —
o o o
Stand - Stand - Stand -
' ' ' ' ' ' ' ' ' ' '
> N N @ > 3\ @ o> N N @
o8 & ) f o »® B N o e @ >
True Labels True Labels True Labels
aggregated views multi-view stacking
Lie - Lie -
0 i)
3 s 3 s
o it = S it =
- -
© ©
] 2
Q Q
g Walk - E Walk =
o o
Stand - Stand -
' ' ' ' ' ' '
> N N @ > 3\ @
o R o W o »© < %
True Labels True Labels

Fig. 12. Confusion Matrices for Opportunity dataset.

7. Conclusions

In this work we presented a method to fuse different types of
sensors for activity recognition using wearable devices. We used
sound and accelerometer data collected with a smartphone and a
wrist-band for common home task activities. The proposed method
is based on multi-view learning and stacked generalization. Each
sensor was modeled as an independent view and the views were
combined by stacking. Our results showed that the multi-view
stacking method achieved better results than feature aggregation
in terms of accuracy, recall and specificity. The experimental re-
sults also showed that combining sound and accelerometer data
boosted the classification performance compared to using just one
source of information. To validate the applicability of the proposed
approach, we performed experiments with other 3 multi modal
sensor HAR datasets obtaining similar results. Although these re-
sults are preliminary, they showed the potential of combining dif-
ferent types of sensors for activity recognition, particularly using
multi-view and stacking methods. There are still several interesting
problems to be explored; one of them is how to deal with missing
data. This situation can arise due to sensor failure or because the
user may decide to disable some sensors due to privacy concerns
or to reduce battery consumption. A recognition system should be
able to dynamically adapt itself to such scenarios. Another inter-
esting future direction is to explore methods for finding the op-
timal combination of types of classifiers. Each sensors’ data may
be better modeled by specific base classifiers. The optimal sensor-
classifier mapping could be found by using optimization methods
such as Genetic Algorithms.
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