
NASH BLOWUPS IN PRIME CHARACTERISTIC

DANIEL DUARTE1 AND LUIS NÚÑEZ-BETANCOURT2

Abstract. We initiate the study of Nash blowups in prime characteristic. First, we
show that a normal variety is non-singular if and only if its Nash blowup is an isomorphism,
extending a theorem by A. Nobile. We also study higher Nash blowups, as de�ned by
T. Yasuda. Speci�cally, we give a characteristic-free proof of a higher version of Nobile's
Theorem for quotient varieties and hypersurfaces. We also prove a weaker version for
F -pure varieties.
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1. Introduction

The Nash blowup is a natural modi�cation of an algebraic variety that replaces singular
points by limits of tangent spaces at non-singular points. The main open problem in this
topic is whether the iteration of the Nash blowup solves the singularities of the variety.
This question is usually attributed to J. Nash [Nob75] but it also appears in the work of
J. G. Semple [Sem54]. If true, it would give a canonical way to resolve singularities. This
problem has been an object of intense study [Nob75, Reb77, GS77, GS82, Hir83, Spi90,
GPT14, GM12, ALP+11, Dua14b].
In order to be able to achieve a resolution of singularities using Nash blowups, it is

needed that this process always modi�es a singular variety. One of the �rst results that
appeared in the theory of Nash blowups is Nobile's Theorem [Nob75]. It states that, for
equidimensional varieties over C, the Nash blowup is an isomorphism if and only if the
variety is non-singular. In additon to being of central interest for the theory of Nash
blowups, Nobile's Theorem has other applications. For instance, it appears in the study
of link theoretic characterization of smoothness [dFT17].
Unfortunately, Nobile's Theorem fails over �elds of positive characteristic. There are

examples of singular curves over �elds of prime characteristic whose Nash blowup is an
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isomorphism [Nob75]. Since the main goal of this theory is to resolve singularities, these
examples discouraged a further study of Nash blowups in prime characteristic. One of the
main purposes of this paper is to provide evidence that the classical Nash blowup in prime
characteristic behaves as expected after adding mild hypotheses. In our �rst main result
we provide a version of Nobile's Theorem in prime characteristic for normal varieties.

Main Theorem (see Theorem 3.10). Let X be a normal irreducible variety. If Nash1(X) ∼=
X, then X is a non-singular variety.

We stress that the hypothesis of X being normal is frequently assumed for many results
in characteristic zero. For instance, M. Spivakovsky [Spi90] showed that a sequence of
normalized Nash blowups eventually gives a resolution of singularities for surfaces. Our
main theorem implies that the original question regarding the Nash blowup and resolution
of singularities can be reconsidered in arbitrary characteristic by iterating the normalized
Nash blowup.
More recently, T. Yasuda [Yas07] introduced a higher-order version of the Nash blowup,

denoted as Nashn(X), replacing tangent spaces by in�nitesimal neighborhoods of order
n. The main goal for this generalization was to investigate whether Nashn(X) would give
a one-step resolution of singularities for n � 0. This question has been settled recently
for varieties over C: it has an a�rmative answer for curves [Yas07], but it is false in
general [TY19]. Higher versions of Nobile's Theorem have been proved for some families
of varieties [Dua14a, Dua17, MDF18].
Furthering the ideas in the proof of Main Theorem, we obtain a weaker version of

Nobile's Theorem for F -pure varieties and the higher Nash blowup. Speci�cally, we show
that if X is F -pure and Nashn(X) ∼= X for some n ≥ 1, then X is a strongly F -regular
variety (see Theorem 3.14). As a consequence, we obtain that, if Nash1(X) ∼= X, thenX is
a non-singular variety (see Corollary 3.15). It is worth mentioning that strongly F -regular
varieties have mild singularities, for instance, they are normal and Cohen-Macaulay.
We also provide examples of higher-order versions of Nobile's Theorem that work in

prime characteristic. We show this property for quotient varieties (see Theorem 4.1), and
for normal hypersurfaces (see Theorem 4.2). We point out that the proofs of these two
results are characteristic-free.
We end this introduction with a few comments about the techniques used in this man-

uscript. B. Teissier [Tei77] pioneered the use of derivations to study the Nash blowup in
characteristic zero. We further this line of research by using rings of diferential operators
and modules of principal parts in any characteristic. These techniques played a key
role in the results presented in this paper. In particular, we use new developments in
this line focused on singularities [BJNnB19] and homological methods [dAD19, BD20].
Furthermore, we combine this approach with the use of Frobenius map to detect regularity
[Kun69] and certain type of singularities [Smi95] to prove our main theorem.

Convention: Throughout this paper, K denotes an algebraically closed �eld and all
varieties are assumed to be irreducible. In particular, X always denotes an irreducible
variety over K. We denote as N the set of non-negative integers and Z+ the set of positive
integers. By a local K-algebra (R,m,K), we mean a local ring R with maximal ideal m
such that K ⊆ R and the map K ↪→ R � R/m is an isomorphism.
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2. Nash blowups and Nobile's Theorem

In this section we recall the de�nition of Nash blowups of algebraic varieties. Then
we discuss a classical theorem of A. Nobile [Nob75] in the theory of Nash blowups that
characterizes smoothness in terms of these blowups.
Let X be an irreducible algebraic variety of dimension d over an algebraically closed

�eld K of arbitrary characteristic. Let IX be the sheaf of ideals de�ning the diagonal
∆ ↪→ X × X. Let PnX := OX×X/In+1

X be the sheaf of principal parts of order n of X.
Denote as Grass(n+dd )(PnX) the Grassmannian of locally free quotients of PnX of rank

(
n+d
d

)
and let Gn : Grass(n+dd )(PnX)→ X be the structural morphism.

The Grassmannian satis�es the following universal property [GD71]. Let h : Y → X
be a morphism. There is a bijective correspondence between locally free quotients of rank(
n+d
d

)
of h∗PnX and morphisms h′ : Y → Grass(n+dd )(PnX) such that the following diagram

commutes:
Y //

h
&&

Grass(n+dd )(PnX)

Gn
��
X

.

Let U ⊆ X be the set of non-singular points of X, and let i : U ↪→ X the inclusion
morphism. Since i∗PnX = PnX |U is locally free of rank

(
n+d
d

)
, we have that there exists a

morphism σ : U → Grass(n+dd )(PnX) by the universal property of Grassmannians.

De�nition 2.1 ([Nob75, OZ91, Yas07]). Let Nashn(X) denote the closure of σ(U) in
Grass(n+dd )(PnX) with its reduced scheme structure, and let πn : Nashn(X) → X be the

restriction of Gn. We call (Nashn(X), πn) the Nash blowup of order n of X.

Remark 2.2. T. Yasuda de�nes the Nash blowup of order n of X using a di�erent
parameter space: the Hilbert scheme of points. Both de�nitions are equivalent [Yas07,
Proposition 1.8].

The following theorem is a classical result in the theory of the usual Nash blowup.

Theorem 2.3 (Nobile's Theorem [Nob75]). If char(K) = 0, then Nash1(X) ∼= X if and
only if X is non-singular.

There are generalizations of this result for n ≥ 1 in some cases [Dua14a, Dua17,
MDF18]. On the other hand, it is well known that this result is not true if char(K) > 0.
The classical counterexample is given by the cusp. If X = V(x3 − y2) and char(K) = 2,
then Nashn(X) ∼= X for all n ≥ 1 (for n = 1 this was proved by A. Nobile [Nob75], and
for n ≥ 1 by T. Yasuda [Yas07]).
We are interested in studying analogs of Theorem 2.3 for n ≥ 1 in arbitrary characteristic.

Because of the previous example, it is necessary to add extra conditions on the variety
if char(K) > 0. We prove that Nobile's Theorem, or weaker versions of it, hold for some
families of varieties.
B. Teissier gave a di�erent proof of Nobile's Theorem [Tei77] using the module of

di�erentials and derivations in characteristic zero. A key part of his proof is that Nash1(X) ∼=
X implies that the module of di�erentials have a free summand of maximal rank. We
give an extension to this fact to the module of principal parts following the same ideas.
We give a proof of this result to stress that it is characteristic-free.
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Lemma 2.4 ([Tei77]). Let X be a variety of dimension d. Assume that Nashn(X) ∼= X
is an isomorphism. Then,

PnOX,x|K ∼= O
(n+dd )
X,x ⊕ Tx

for each x ∈ X, where PnOX,x|K is the module of principal parts of OX,x and Tx is its torsion
module.

Proof. Since Nashn(X) ∼= X, we have the following commutative diagram:

X

Id
$$

π−1
n// Nashn(X) �

� //

πn

��

Grass(n+dd )(PnX)

Gn
vv

X

By the universal property of the Grassmannian, Id∗PnX = PnX has a locally free quotient
of rank

(
n+d
d

)
. Then, there exists a surjective morphism

PnX // L // 0 ,

where L is a locally free OX-module of rank
(
n+d
d

)
. Therefore, for each x ∈ X the previous

exact sequence induces

PnOX,x|K // O(n+dd )
X,x

// 0 .(2.0.1)

Since O(n+dd )
X,x is free and rank(PnOX,x|K) =

(
n+d
d

)
, we conclude that PnOX,x|K

∼= O(n+dd )
X,x ⊕ Tx,

where Tx is the torsion submodule of PnOX,x|K. �

Remark 2.5. For n = 1 and char(K) = 0, the existence of the surjective morphism
(2.0.1) is used by B. Teissier to prove that OX,x is a regular local ring, implying Nobile's
Theorem. The proof strongly uses a result by O. Zariski regarding derivations which
allows to apply induction on the dimension of the ring. Unfortunately, it is not clear how
to extend Zariski's result for higher-order di�erential operators.

3. Analogs of Nobile's Theorem for normal and F -pure varieties

We start by recalling de�nitions and properties regarding di�erential operators that are
used to prove our main result (Theorem 3.10).

De�nition 3.1 ([Gro67]). Let R be a K-algebra. The K-linear di�erential operators of
R of order n, Dn

R|K ⊆ HomK(R,R), are de�ned inductively as follows:

(i) D0
R|K = HomK(R,R).

(ii) Dn
R|K = {δ ∈ HomK(R,R) | δr − rδ ∈ Dn−1

R|K ∀ r ∈ R}.

The ring of K-linear di�erential operators is de�ned by DR|K =
⋃
n∈N

Dn
R|K.

De�nition 3.2. Let (R,m,K) be a local K-algebra with K as a coe�cient �eld. We
de�ne the n-th di�erential powers [DDSG+18] of m by

m〈n〉 = {f ∈ R | δ(f) ∈ m for all δ ∈ Dn−1
R|K }

for n ∈ Z+. The di�erential core of R [BJNnB19] is de�ned by pdiff(R) =
⋂
n∈Z+ m〈n〉.
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Proposition 3.3 ([BJNnB19, Proposition 4.15.]). Let (R,m,K) be a local K-algebra with
K as a coe�cient �eld. Then,

dimK(R/m〈n+1〉) = free. rank(PnR|K),

where free. rank(M) denotes the maximal rank of a free module that splits from M (that
is free. rank(M) = max{t | ∃φ : M → Rt surjective}).

We now present a perfect pairing between di�erential operators and di�erential powers.
This was implicitly introduced in previous work regarding convergence of di�erential
signature [BJNnB19, Section 8].

Lemma 3.4. Let (R,m,K) be a local K-algebra with K as a coe�cient �eld, and JR|K =
{δ ∈ DR|K | δ(R) ⊆ m}. There exists a nondegenerate K-bilinear function

( , ) :
(
Dn−1
R|K /

(
JR|K ∩Dn−1

R|K

))
×R/m〈n〉 → R/m

de�ned by (δ, r) 7→ δ(r).

Proof. By de�nition, Dn−1
R|Km

〈n〉 ⊆ m and JR|KR ⊆ m. Then, ( , ) is a well de�ned
function. Since K-linearity in each entry is given by the de�nition of ( , ), we focus on
non-degeneracy.

Let δ ∈ Dn−1
R|K /

(
JR|K ∩Dn−1

R|K

)
such that (δ, r) = δ(r) = 0 in R/m for every r ∈ R/m〈n〉.

Then, δ(r) ∈ m for every r ∈ R, and so, δ ∈ JR|K. We conclude that δ = 0. Similarly,

let r ∈ R/m〈n〉 be such that(δ, r) = δ(r) = 0 in R/m for every δ ∈ Dn−1
R|K /

(
JR|K ∩Dn−1

R|K

)
.

Then, δ(r) ∈ m for every δ ∈ Dn−1
R|K , and so, r ∈ m〈n〉. We conclude that ( , ) is

nondegenerate. �

We now introduce concepts in prime characteristic that play a role in the proof of our
main result (Theorem 3.10).

De�nition 3.5. Let (R,m,K) be a local K-algebra with K as a coe�cient �eld. Suppose
that K has prime characteristic p. Suppose that R is a domain.

• The ring of pe-roots of R is de�ned by

R1/pe = {f 1/pe | f ∈ R} ⊆ frac(R).

• We say that R is F -�nite if R1/pe is �nitely generated as an R-module.
• We say that R is F -pure if the inclusion R ↪→ R1/pe splits.
• We say that R is strongly F -regular if for every c ∈ R \ {0} there exists e ∈ Z+

such that the inclusion Rc1/pe ↪→ R1/pe splits.

We say that a variety X satis�es one of these properties if it is satis�ed for every local
ring OX,x for every closed point x ∈ X.

De�nition 3.6. Let (R,m,K) be a local K-algebra with K as a coe�cient �eld. Suppose
that K has prime characteristic p, and that R is a domain.

• We say that an additive map φ : R→ R is p−e-linear if φ(rp
e
f) = rφ(f).

• The set of all p−e-linear maps is denoted by CeR.
• The set of Cartier operators is de�ned by CR =

⋃
e∈N CeR.
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Remark 3.7. There is a bijective correspondence between

Ψ : CeR → HomR(R1/pe , R)

given by Ψ(φ)(r1/pe) = φ(r) for φ ∈ CeR.

The following characterization of di�erential operators in prime characteristic plays a
crucial role to relate them with Cartier operators. We stress that the following results
holds because we are assuming that K is an algebraically closed �eld, and so, a perfect
�eld.

Theorem 3.8 ([Yek92]). Let (R,m,K) be a local K-domain with K as a coe�cient �eld.
Then,

DR|K =
⋃
e∈N

HomRpe (R,R).

Remark 3.9. There is a bijective correspondence between

Ψ : HomRpe (R,R)→ HomR(R1/pe , R1/pe)

given by Ψ(φ)(r1/pe) = (φ(r))1/pe for φ ∈ HomRpe (R,R).

Now we are ready to prove that the Nash blow-up does properly modify normal varieties.

Theorem 3.10. Let X be a normal variety over K of dimension d. Suppose that K has
prime characteristic p. If Nash1(X) ∼= X, then X is a non-singular variety.

Proof. Let x be a point in X. Let R = OX,x and m be its maximal ideal. By Lemma 2.4,
we have that the module of principal parts P1

R|K has a free summand of rank d + 1. As

a consequence, dimK
(
m/m〈2〉

)
= d. There exist elements x1, . . . , xd ∈ m and derivations

∂1, . . . , ∂d such that ∂i(xj) is a unit if and only if i = j by Lemma 3.4. Let A = (ai,j) be
the d × d-matrix whose (i, j)-entry is ∂i(xj). We note that A is an invertible matrix, as
it is invertible modulo m. Let C = (ci,j) be the inverse of A. Let δt =

∑d
i=1 ct,i∂i. Then,

δt(xj) =
∑d

i=1 ct,i∂i(xj) =
∑d

i=1 ct,iai,j. Then, δt(xj) = 1 if t = j and zero otherwise.
Let A = {α = (α1, . . . , αd) ∈ Nd | αi < p ∀i}. Let 1

α!
δα = 1

α1!···αd!
δα1

1 · · · δ
αd
d for α ∈ A .

We point out that 1
αi!

in K is well de�ned, because αi < p for every i. Since δt is a
derivation for every t, we have that 1

α!
δα(xα) = 1. In addition, 1

α!
δα(xβ) ∈ m for for every

α, β ∈ A such that α 6= β.
Let Ã = (ãα,β) be the pd×pd-matrix indexed by A ×A , whose (α, β)-entry is 1

α!
δα(xβ).

For this, we need to order A , but the choice of order does not play a role in the rest of
the proof. We note that Ã is an invertible matrix. Let C̃ = (c̃α,β) be the inverse of Ã.
Let φγ =

∑
α c̃γ,α

1
α!
δα. Then, φγ(xβ) =

∑
α c̃γ,α

1
α!
δα(xβ) =

∑
α c̃γ,αãα,β. Then, φγ(x

β) = 1
if γ = β and zero otherwise.
SinceK has prime characteristic, DerR|K ⊆ HomRp(R,R). Moreover, 1

α!
δα ∈ HomRp(R,R)

for every α ∈ A . As a consequence, φα ∈ HomRp(R,R) for every α ∈ A . Let
ϕα ∈ HomR(R1/p, R1/p) de�ned by ϕα(f 1/p) = (φα(f))1/p . Then, ϕα(xβ/p) = 1 if α = β
and zero otherwise.
We set ψ : ⊕α∈AReα → R1/p de�ned by eα 7→ xα/p. Let Q ⊆ R be a prime ideal of R

of height 1. Let ψQ be the map induced by ψ by the localization at Q. Since R is normal,
we have that RQ is a regular ring. Then, R1/p

Q is a free RQ-module. Let σQ : R
1/p
Q → RQ
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be a splitting of the inclusion RQ ↪→ R
1/p
Q . We consider the map ρQ : R

1/p
Q →

⊕
α∈A RQeα

de�ned by

ρQ

(
f 1/p

s

)
=
⊕
α∈A

σQ

(
ϕα(f 1/p)

s

)
eα.

Then, we have that ρQ is surjective because ρQ(xα/p) = eα. Since R
1/p
Q is a free RQ-module

of rank pd, we conclude that ρQ is an isomorphism. Furthermore, ρQ◦ψQ is the identity on
⊕α∈ARQeα. As a consequence, ψQ is an isomorphism. Since R is normal, both ⊕α∈AReα
and R1/p are torsion-free and (S2). Then, ψ is an isomorphism [Sta19, Tag 0AV9]. Hence,
R1/p is a free R-module, and so, R is regular by Kunz's Theorem [Kun69]. �

We now focus on F -pure varieties, that is, varieties whose local ring OX,x is F -pure for
every closed point x ∈ X. For this, we need to recall two criterions. One for D-simplicity
and another for strong F -regularity.

Proposition 3.11 ([BJNnB19, Corollary 3.16]). Let (R,m,K) be a local K-algebra with
K as a coe�cient �eld. Then, R is simple as a DR|K-module if and only if its di�erential
core is zero.

Lemma 3.12. Let (R,m,K) be a local K-algebra with K as a coe�cient �eld. Then, the
di�erential core of R is a prime ideal.

Proof. Let mJpeK = {f ∈ R | φ(f) ∈ m ∀φ ∈ HomRpe (R,R)} and Ie = {f ∈ R | φ(f) ∈
m ∀φ ∈ CeR}. Let q =

⋂
e∈Z+ Ie. We recall that q is a prime ideal [AE05, Theorem] (see

also [Sch10, Remark 4.4]). Since K is perfect, DR|K =
⋃
e∈N HomRpe (R,R) by Theorem

3.8. Then,
m〈µ(pe−1)〉 ⊆ mJpeK ⊆ m〈p

e−1〉,

where µ = dimK m/m2 [BJNnB19, Proposition 5.14]. Since R is F -pure, we have that
mJpeK = Ie [BJNnB19, Proposition 5.10]. As a consequence,

q =
⋂
e∈Z+

Ie =
⋂
e∈Z+

mJpeK =
⋂
n∈Z+

m〈n〉 = pdiff(R).

Hence, the di�erential core of R is a prime ideal. �

Theorem 3.13 ([Smi95, Theorem 2.2]). Let (R,m,K) be a local K-algebra with K as a
coe�cient �eld. Let R be an F -pure F -�nite ring. Then, R is DR|K-simple if and only if
R is strongly F -regular.

We now present another of our main results. Even though we are not able to show
that Nashn(X) ∼= X implies smoothness, this condition implies strong F -regularity. In
particular, in this case X is Cohen-Macaulay and normal.

Theorem 3.14. Let X be an F -pure variety. If Nashn(X) ∼= X for some n ≥ 1, then X
is a strongly F -regular variety.

Proof. Let x be a closed point in X, and d = dim(X). Let R = OX,x and m be its
maximal ideal. By Lemma 2.4, we have that the module of principal parts PnR|K has a free

summand of rank
(
n+d
d

)
. Then, by Proposition 3.3, dimK(R/m〈n〉) =

(
n+d
d

)
. Let p denote

the di�erential core of R. Since R is an F -pure ring, p is a prime ideal by Lemma 3.12.
Hence, R/p is a domain.
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Let R = R/p and m = mR. We note that p is a DR|K-ideal [BJNnB19, Proposition
3.15], so, it is stable under the action of any di�erential operator in DR|K. Then, we have
a natural map of �ltered rings DR|K → DR|K. Then, m

〈n〉 ⊆ m〈n〉R. Since p =
⋂
t∈Nm

〈t〉,
we have that(

n+ d

d

)
= dimK(R/m〈n〉) = dimK(R/m〈n〉 + p) ≤ dimK(R/m〈n〉) ≤

(
n+ c

c

)
,

where c = dimR/p ≤ d by Proposition 3.3. Then, c = d. We note that p contains every
minimal prime. We conclude that p = 0; otherwise, p contains a parameter and c < d.
Hence, R is strongly F -regular by Proposition 3.11 and Theorem 3.13. �

We now present an analogous to Nobile's Theorem for F -pure rings. It is worth
mentioning that F -pure rings might not be normal.

Corollary 3.15. Let X be an F -pure variety. If Nash1(X) ∼= X, then X is a non-singular
variety.

Proof. By Theorem 3.14. X is a strongly F -regular variety. Then, X is a normal variety.
Hence, X is nonsingular by Theorem 3.10. �

4. Higher-order versions of Nobile's Theorem

In this section we study a higher version of Nobile's Theorem for quotient varieties.
We also revisit a known results for hypersurfaces [Dua17, Theorem 4.13] concerning the
analog of Nobile's Theorem for higher Nash blow-ups in prime characteristic.

4.1. Quotient varieties. LetG be a linearly reductive algebraic group acting algebraically
on Spec(R), where R is a polynomial rings over K. The algebraic quotient X�G is de�ned
by identifying two points of X whenever their orbit closures have non-empty intersection.
This is an a�ne algebraic variety whose coordinate ring is RG. If all the orbits are
closed, then X �G is the usual orbit space and it is called a quotient variety. If |G| has a
multiplicative inverse in K, this situation happens. In this subsection, we present a higher
version of Nobile's Theorem in this case.

Theorem 4.1. Let G be a �nite non-trivial group such that |G| has a multiplicative
inverse in K. Let G act linearly on a polynomial ring R = K[x1, . . . , xd]. Suppose that
G \ {e} contains no elements that �x a hyperplane in the space of one-forms [R]1. Let
X = Spec(RG). Then, Nashn(X) 6∼= X.

Proof. The rami�cation locus of a �nite group action corresponds to the union of �xed
spaces of elements of G. Consequently, the assumption that no element �xes a hyper-
plane ensures that the extension is unrami�ed in codimension one. The inclusion is order-
di�erentially extensible [BJNnB19, Proposition 6.4]. Let m be the maximal homogeneous
ideal of R, and η = m∩RG. We note that dimRG

m = dimRG = d. Under these conditions,
we have that η〈n〉 = mn ∩RG [BJNnB19, Proposition 6.14]. Then,

(4.1.1) dimK(η〈j−1〉
η /η〈j〉η ) ≤ dimK(mj−1

m /mj
m).

By our assumptions on G, we have that R 6= RG. Then,

(4.1.2) dimK(η〈1〉η /η〈2〉η ) < dimK(mm/m
2
m) = d.
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We conclude that

dimK(R/η〈n〉η ) =
n∑
j=1

dimK(η〈j−1〉
η /η〈j〉η ) <

n∑
j=1

dimK(mj−1
m /mj

m) =

(
n+ d

d

)
.

Then, the free rank of PRGη |K is strictly smaller than
(
n+d
d

)
by Proposition 3.3. As a

consequence, Nashn(X) 6∼= X by Lemma 2.4. �

4.2. Hypersurfaces. Now we study the case of hypersurfaces. We note that the proof
we present is characteristic free.

Theorem 4.2. Let X be a normal hypersurface. If Nashn(X) ∼= X, then X is a non-
singular variety.

Proof. Let x ∈ X and R = OX,x. By Lemma 2.4, PnR ∼= R(n+dd ) ⊕ T , where T is the
torsion submodule. On the other hand, R normal implies that PnR is torsion-free [BD20,

Theorem 4.3]. Therefore PnR ∼= R(n+dd ). Then R is a regular ring [BD20, Theorem 3.1]
(see also [BJNnB19, Theorem 10.2] for a more general statement). We conclude that X
is non-singular. �
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