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Abstract. We prove that the higher Nash blowup of a normal toric variety de�ned
over a �eld of positive characteristic is an isomorphism if and only if it is non-singular.
We also extend a result by R. Toh-Yama which shows that higher Nash blowups do not
give a one-step resolution of certain toric surface. These results were previously known
only in characteristic zero.

1. Introduction

The Nash blowup of order n is a modi�cation of an algebraic variety that replaces
singular points by limits of in�nitesimal neighborhoods of order n of non-singular points.
The main goal for this generalization of the usual Nash blowup was to investigate whether
this modi�cation would give a one-step resolution of singularities for n� 0 [Yas07]. The
�rst result obtained on this question was an a�rmative answer for complex curves [Yas07].
A classical result in the theory of Nash blowups over �elds of characteristic zero, due

to A. Nobile, states that the Nash blowup of order one is an isomorphism if and only
if the variety is non-singular [Nob75]. There are generalizations of this result for the
higher Nash blowup in the case of normal toric varieties, normal hypersurfaces and toric
curves [Dua14a, Dua17, CMDGF20]. In contrast, it is also known that Nobile's Theorem
over �elds of positive characteristic fails in general: there are singular curves whose Nash
blowup of any order is an isomorphism (for n = 1 the counterexample is due to A. Nobile
[Nob75] and for n ≥ 1, to T. Yasuda [Yas07]). However, it was recently proven that
Nobile's Theorem is true for normal varieties in prime characteristic [DNB20]. From
this result one may wonder if other results only known in characteristic zero can be also
obtained in prime characteristic. In this manuscript, in particular, we are interested in
results concerning toric varieties. Our �rst main result states that a higher version of
Nobile's Theorem holds over �elds of prime characteristic for normal toric varieties.

Theorem A (see Theorem 2.12). Let X be a normal toric variety over an algebraically
closed �eld K of positive characteristic. If Nashn(X) ∼= X for some n ≥ 1, then X is a
non-singular variety.

Theorem A suggests that the question regarding one-step resolution via higher Nash
blowups can be reconsidered in arbitrary characteristic for normal toric varieties. R. Toh-
Yama [TY19] settles this question over C giving an example of a toric surface whose every
higher Nash blowup is singular. We extend this result to prime characteristic.
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Theorem B (see Theorem 3.17). Let K be an algebraically closed �eld of positive characteristic.
Let X = V(xy − z4) ⊆ K3. Then, Nashn(X) is singular for all n.

The theory of Nash blowups in the context of toric varieties has been an object of intense
study [Reb77, GS77, ALP+11, GM12, GPT14, Dua14b, Dua14a, TY19, CMDGF20]. This
paper aims to contribute to this study by emphasizing that the combinatorial nature of
toric varieties allows us to work over �elds of arbitrary characteristic. Our work also goes
along with the modern approach of the theory of toric varieties over �elds of arbitrary
characteristic [KKMSD73, Stu96, Liu13, GPT14].

Convention: Throughout this paper, K denotes an algebraically closed �eld and all
varieties are assumed to be irreducible. In particular, X always denotes an irreducible
variety over K. We denote as N the set of non-negative integers and Z+ the set of positive
integers.
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2. Higher Nash blowup of normal toric varieties

2.1. Higher Nash blowups. In this subsection we recall the de�nition of the higher
Nash blowup of an algebraic variety, and we state a basic property of these blowups.
Let X be an algebraic variety of dimension d, x ∈ X a K−point, and m the maximal

ideal corresponding to x. Let x(n) := Spec(OX,x/mn+1) be the nth in�nitesimal neighborhood
of x. If x is a non-singular point of X, then x(n) is a closed subscheme of X of length
N =

(
d+n
d

)
. Therefore, it corresponds to a point

[x(n)] ∈ HilbN(X),

where HilbN(X) is the Hilbert scheme of N points of X. Let Sing(X) denote the singular
locus of X. We have a map

δn : X \ Sing(X)→ HilbN(X),

x 7→ [x(n)].

De�nition 2.1 ([Yas07, De�nition 1.2]). The Nash blowup of order n of X, denoted
by Nashn(X), is the closure of the graph of δn with reduced scheme structure in X ×K
HilbN(X). By restricting the projection X ×K HilbN(X)→ X we obtain a map

πn : Nashn(X)→ X.

This map is projective, birational, and it is an isomorphism over X \Sing(X). In addition,
Nash1(X) is canonically isomorphic to the classical Nash blowup of X [Yas07, Section 1].

The following theorem characterizes smoothness in terms of the usual Nash blowup.

Theorem 2.2 ([Nob75, DNB20]). Let X be a normal variety. Then Nash1(X) ∼= X if
and only if X is non-singular.
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The previous theorem holds without the assumption of normality in characteristic
zero [Nob75]. We are interested in showing an analog of Theorem 2.2 for n ≥ 1 in
positive characteristic for normal toric varieties, thus extending the corresponding result
in characteristic zero [Dua14a].

2.2. Combinatorial description of the normalization of the higher Nash blowup
of a normal toric variety. In order to study Theorem A, we �rst give a combinatorial
description of the higher Nash blowup in arbitrary characteristic. Our study uses the
general theory of toric varieties over arbitrary �elds [KKMSD73, Stu96, Liu13, GPT14].
It is inspired on the combinatorial description of F -blowups of toric varieties in positive
characteristic [Yas12, Proposition 3.5].

Notation 2.3. Throughout this section, we use the following notation.

• σ ⊆ Rd denotes a strictly convex rational polyhedral cone of dimension d. After a
suitable change of coordinates, we can assume that σ̌ ⊆ Rd

≥0.
• Let {a1, . . . , as} ⊆ Nd be the minimal set of generators of σ̌ ∩ Zd. In particular,
K[σ̌ ∩ Zd] = K[xa1 , . . . , xas ] ⊆ K[x1, . . . , xd].
• X := SpecK[xa1 , . . . , xas ] denotes the corresponding d-dimensional normal toric
variety with torus T.
• J0 := 〈xa1 − 1, . . . , xas − 1〉 ⊆ K[xa1 , . . . , xas ] and Jn := (J0)

n+1. Notice that J0 is
the maximal ideal corresponding to the closed point (1, . . . , 1) ∈ T ⊆ X.

Remark 2.4. Let η : Nashn(X) → Nashn(X) be the normalization of Nashn(X). The
action of T on X induces an action on Nashn(X) [Yas07, Section 2.2]. Hence, Nashn(X)

is a toric variety with torus T ∼= π−1n (T). In particular, Nashn(X) is also a (normal) toric
variety. Let Σ be the fan corresponding to Nashn(X). Since πn ◦ η : Nashn(X) → X is
proper and equivariant [Yas07, Sections 1.1, 2.2], it follows that the support of Σ is σ
[KKMSD73, Chapter 1, Theorem 8].

If char(K) = 0, Nashn(X) can be described combinatorially in terms of a Gröbner
fan [Dua14a, Theorem 2.10]. We refer the reader to Sturmfels's book [Stu96] and the
�rst author's paper on Nash blowups of toric varieties [Dua14a] for the general theory of
Gröbner bases and Gröbner fans over monomial subalgebras. Throughout this paper we
use the usual notation for the basic concepts of Gröbner bases and Gröbner fans.
In this section we show that the combinatorial description for Nashn(X) in terms of a

Gröbner fan is also valid over �elds of arbitrary characteristic. The proof in this case is
along the same lines as in characteristic zero. We include it for the sake of completeness.

De�nition 2.5. Consider Notation 2.3. Let w ∈ σ∩Zd and f =
∑
cux

u ∈ K[xa1 , . . . , xas ].
Denote dw(f) := max{w · u|cu 6= 0} and ft := tdw(f)f(t−w·a1xa1 , . . . , t−w·asxas). For an
ideal I ⊆ K[xa1 , . . . , xas ], we call the ideal It := 〈ft|f ∈ I〉 ⊆ K[xa1 , . . . , xas ][t] the Gröbner
degeneration of I with respect to w [Eis95, Section 15.8].

Proposition 2.6 ([Dua14a, Proposition 2.7]). Consider Notation 2.3. Let Σ be the fan

associated to Nashn(X) and GF(Jn) be the Gröbner fan of Jn. Then, Σ is a re�nement
of GF(Jn).

Proof. Let σ1 ∈ Σ be a cone di�erent from {0}. Let w ∈ Zd be a vector in the relative
interior of σ1. Then w belongs to the relative interior of a unique cone σ2 ∈ GF(Jn). Let
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w′ 6= w be in the relative interior of σ1. We show that inw(Jn) = inw′(Jn), and so, w′ ∈ σ2
according to the de�nition of GF(Jn).
Let λw and λw′ be the corresponding one-parameter subgroups. The following equality

of limits in the toric variety Nashn(X) is well known (this is usually proved over C but it
is true over algebraically closed �elds of arbitrary characteristic [KKMSD73, Chapter 1,
Theorems 1' and 2(a)]):

(2.2.1) lim
t→0

λw(t) = lim
t→0

λw′(t) =: l ∈ Nashn(X).

Since η is an isomorphism over π−1n (T), we can consider the induced one-parameter
subgroups λw : K∗ → π−1n (T) and λw′ : K∗ → π−1n (T) satisfying λw = η ◦ λw and
λw′ = η ◦ λw′ .
Let V ⊆ Nashn(X) be an open neighborhood of η(l). Then l ∈ η−1(V ) ⊆ Nashn(X).

By (2.2.1), there exists a neighborhood W ⊆ K of 0 such that λw(W ∩K∗) ⊆ η−1(V ). It
follows that λw(W ∩K∗) ⊆ V . Applying the same arguments to λw′ we obtain:

(2.2.2) lim
t→0

λw(t) = η(l) = lim
t→0

λw′(t).

To conclude that inw(Jn) = inw′(Jn) from this equality, we use an argument of limits
of �bers in a �at family which appears in the work of several authors (see, for instance,
[Yas12, Proposition 3.5], [Mac07, Lecture 1]).
We recall that λw(t) ∈ π−1n (T) has the following explicit description for each t ∈ K∗

[Dua14a, Section 2.2, Page 118]:

(2.2.3) λw(t) =
(

(tw·a1 , . . . , tw·as), Spec
K[xa1 , . . . , xas ]

(Jn)t

)
,

where (Jn)t is the Gröbner degeneration of Jn with respect to w. In addition, the family
Spec K[xa1 ,...,xas ][t]

(Jn)t
→ SpecK[t] is �at, the �ber over t ∈ K∗ is Spec K[xa1 ,...,xas ]

(Jn)t
and the

�ber over 0 is Spec K[xa1 ,...,xas ]
inw(Jn)

[Eis95, Theorem 15.17]. Since SpecK[t] is non-singular and
one-dimensional, it follows that [EH00, Proposition II-29]:

lim
t→0

λw(t) =
(

lim
t→0

(tw·a1 , . . . , tw·as), Spec
K[xa1 , . . . , xas ]

inw(Jn)

)
.

Applying the same arguments to λw′ , (2.2.2) implies inw(Jn) = inw′(Jn). �

In order to prove that Σ = GF(Jn) it is required the following lemma, whose proof is
similar to the one of the previous proposition.

Lemma 2.7 ([Dua14a, Lemma 2.9]). Let σ1, σ2 ∈ Σ be such that the relative interiors of
σ1, σ2 and σ1 ∩ σ2 are contained in the relative interior of some cone τ ∈ GF(Jn). Then
η(γσ1) = η(γσ2) = η(γσ1∩σ2), where γσ1, γσ2 and γσ1∩σ2 are the corresponding distinguished
points.

Proof. Let w,w′, w′′ ∈ Zd be in the relative interior of σ1, σ2 and σ1 ∩ σ2, respectively.
Then, limt→0 λw(t) = γσ1 , limt→0 λw′(t) = γσ2 , limt→0 λw′′(t) = γσ1∩σ2 [KKMSD73, Chapter
1, Theorem 2]. By hypothesis we have inw(Jn) = inw′(Jn) = inw′′(Jn). The lemma follows
using the same arguments of the proof of the previous proposition. �

The following theorem, in arbitrary characteristic, follows from the previous two results
in exactly the same way as done previously in characteristic zero.
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Theorem 2.8 ([Dua14a, Theorem 2.10]). Consider Notation 2.3. Let Σ be the fan

associated to Nashn(X) and let GF(Jn) be the Gröbner fan of Jn. Then Σ = GF(Jn).

In the case of characteristic-zero �elds, the previous description was used to prove the
following result.

Theorem 2.9 ([Dua14a, Corollary 3.8]). Let X be a normal toric variety. If Nashn(X) ∼=
X, then X is a non-singular variety.

The proof of this result requires the assumption on the characteristic of the �eld: there
appear some coe�cients of polynomials that might turn zero in arbitrary characteristic. In
the following section we adapt the proof of the previous theorem for positive characteristic.

2.3. A characterization of smoothness for toric varieties. As in Notation 2.3, let
X be the normal toric variety de�ned by the cone σ. We show that if X is singular, then
πn ◦ η is not an isomorphism. This implies that πn is not an isomorphism since X is
normal. By Theorem 2.8, it is enough to show that GF(Jn) is a non-trivial subdivision of
σ, and so, πn ◦ η is not injective.
By de�nition of Gröbner fan, we need to �nd w, w′ ∈ σ such that inw(Jn) 6= inw′(Jn).

This is equivalent to the following fact. Fix w in the interior of σ and let > be any
monomial order on K[xa1 , . . . , xas ]. Let G be the reduced Gröbner basis of Jn with respect
to the re�ned order >w. Then inw(Jn) 6= inw′(Jn) for some w′ ∈ σ if and only if inw(g) 6=
inw′(g) for some g ∈ G [Dua14a, Section 1.2]. This is what we prove.
Recall that {a1, . . . , as} ⊆ Zd≥0 denotes the minimal set of generators of σ̌ ∩ Zd. It is

known that the set {a1, . . . , as} contains the ray generators of the edges of σ̌ which we
denote, after renumbering if necessary, by {a1, . . . , ar}, as well as possibly some points in
the relative interior of {

∑r
i=1 λiai|0 ≤ λi < 1} [CLS11, Proposition 1.2.23]. Since σ̌ has

dimension d, we must have r ≥ d. Let us assume that σ is not a regular cone.

Lemma 2.10. Let char(K) = p > 0. In the context of Notation 2.3, there exist h ∈ Jn
and w in the relative interior of σ such that lt>w(h) = (xai)n for some i ∈ {1, . . . , r}.

Proof. We proceed by induction on n. Using the binomials xai − 1, it is enough to show
the case n = 1. Consider the following map of K-algebras:

φ : K[y1, . . . , ys]→ K[xa1 , . . . , xas ], yi 7→ xai .

Let J1 := 〈y1 − 1, . . . , ys − 1〉2 + kerφ. Since σ is not a regular cone, we must have s > d.
Since σ̌ has dimension d we may assume, after renumbering if necessary, that {a1, . . . , ad}
is linearly independent. Let A be the matrix whose columns are a1, . . . , ad, in this order.
Let λ′ := A−1ad+1 ∈ Qd. By multiplying by suitable integers and after renumbering if
necessary, we obtain the following relation:

(2.3.1) λ1a1 + · · ·+ λtat = λt+1at+1 + · · ·+ λd+1ad+1,

where λi ∈ N for all i, and for some t ∈ {1, . . . , d}.
Let f̄ := yλ11 · · · yλtt −y

λt+1

t+1 · · · y
λd+1

d+1 ∈ Zp[y1, . . . , ys] and f ∈ K[y1, . . . , ys] the polynomial
it induces under the canonical homomorphism j : Zp ↪→ K. By (2.3.1), f ∈ kerφ. In
particular, f ∈ kerφ+ 〈y1 − 1, . . . , ys − 1〉2 = J1.
Let h̄ := δ1(y1 − 1) + · · · + δd+1(yd+1 − 1) ∈ Zp[y1, . . . , ys], where δi = λi mod p for

i ≤ t and δi = −(λi mod p), for i ≥ t + 1. Let h̃ ∈ K[y1, . . . , ys] be the polynomial that
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h̄ induces. Then h̃ is the linear part of the Taylor expansion of f around (1, . . . , 1) ∈ Ks.
Since f ∈ J1, we obtain h̃ ∈ J1, and so h := φ(h̃) =

∑
i j(δi)x

ai + c ∈ J1 for some c ∈ K.
Now consider the following cases (recall that r denotes the number of edges of σ̌):

(1) Suppose that r > d. Thus a1, . . . , ad+1 ∈ {a1, . . . , ar}.
(1.1) p - λi for some 1 ≤ i ≤ d + 1. Then δi 6= 0 in Zp and lt>w(h) = xai , for some

i ∈ {1, . . . , r} and any w ∈ σ, as desired.
(1.2) Assume that p|λi for all i. For each i, let λi := plimi, where li ≥ 1 and p - mi.

Then (2.3.1) becomes

pl1m1a1 + · · ·+ pltmtat = plt+1mt+1at+1 + · · ·+ pld+1md+1ad+1.

Let l = mini{li} and ki := li − l. Factoring pl we obtain:

pk1m1a1 + · · ·+ pktmtat = pkt+1mt+1at+1 + · · ·+ pkd+1md+1ad+1,

where ki = 0 for some i. Substituting (2.3.1) by this last equation takes us
to the case (1.1).

(2) Suppose that r = d.
(2.1) p - λi for some 1 ≤ i ≤ d. Assume that i = d. Since {a1, . . . , as} is the

minimal set of generators of σ̌ ∩ Zd, we have that ad+1 =
∑d

i=1 τiai, for some
0 ≤ τi < 1. Denote by H the hyperplane generated by {a1, . . . , ad−1}. Then
H ∩ σ̌ is a facet of σ̌, i.e., there exists w ∈ σ such that w⊥ = H. In particular,
w · ai = 0 for i = 1, . . . , d− 1, and w · ad > 0. If ad+1 ∈ H then lt>w(h) = xad ,
as desired. Otherwise, w · ad+1 > 0. Now we choose w′ su�ciently close
to w in the relative interior of σ and such that 0 < w′ · ai < w′ · ad and
0 < w′ · ai < w′ · ad+1 for all i = 1, . . . , d− 1. We know that ad+1 =

∑d
i=1 τiai,

where, in particular, 0 < τd < 1. This fact allow us to choose w′ satisfying
also w′ · ad+1 < w′ · ad. Therefore lt>w′

(h) = xad .
(2.2) p|λi for all 1 ≤ i ≤ d and p - λd+1. Using the notation of case (1.2) we obtain:

pl1m1a1 + · · ·+ pltmtat − plt+1mt+1at+1 − · · · − pldmdad = λd+1ad+1.

Since {a1, . . . , ad} is linearly independent, λd+1 6= 0. Let l = mini{li} and
ki = li − l. Then

pl
(
pk1m1a1 + · · ·+ pktmtat − pkt+1mt+1at+1 − · · · − pkdmdad

)
= λd+1ad+1.

Let v := pk1m1a1 + · · · + pktmtat − pkt+1mt+1at+1 − · · · − pkdmdad. Then
v = λd+1

pl
ad+1. Since v ∈ Zd and p - λd+1, it follows that p divides each entry

of ad+1, a contradiction.
(2.3) p|λi for all 1 ≤ i ≤ d+1. Proceed as in (1.2) to reduce this case to cases (2.1)

or (2.2).

�

Lemma 2.11. Consider Notation 2.3. If m < n+ 1, then (xai − 1)m /∈ Jn for every i.

Proof. It is enough to prove the statement for m = n. We �rst show that xai − 1 /∈ J1.
Since ai is a primitive vector, there exists j such that aij 6= 0 and p - aij. For simplicity
of notation assume i = j = 1. Suppose that xa1 − 1 ∈ J1, i.e.,

xa1 − 1 =
∑

hij(x
ai − 1)(xaj − 1).
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Taking derivations with respect to x1 on both sides of this equation, we obtain a non-zero
monomial on the left hand, and on the right hand a sum such that every summand has
a factor xai − 1. Therefore, evaluating the resulting equation on (1, . . . , 1), we obtain
something di�erent from zero on the left hand and zero on the right hand. This is a
contradiction.
Let J0 = 〈xa1 − 1, . . . , xas − 1〉 ⊆ K[xa1 , . . . , xas ]. By de�nition, Jn = (J0)

n+1. The
ideal J0 is the maximal ideal corresponding to (1, . . . , 1) ∈ X, which is non-singular.
Let R = K[xa1 , . . . , xas ]J0 , which is a regular local ring. By the previous paragraph,
xa1 − 1 ∈ J0R \ (J0)

2R. Then xa1 − 1 is a linear combination of the minimal generators
of J0R, plus possibly some other terms of higher order. This implies that, for each n ≥ 1,
(xa1 − 1)n ∈ (J0)

nR \ (J0)
n+1R. It follows that (xa1 − 1)n /∈ Jn. �

We are now ready to prove Theorem A.

Theorem 2.12. Let char(K) = p > 0. Let X be the normal toric variety de�ned by σ

and πn ◦η : Nashn(X)→ X be the normalized higher Nash blowup of X. If X is singular,

then Nashn(X) 6∼= X. In particular, if Nashn(X) ∼= X for some n ≥ 1, then X is a
non-singular variety.

Proof. Using Lemmas 2.10 and 2.11, the theorem follows analogously to the characteristic
zero case [Dua14a, Theorem 3.7]. �

3. The A3-singularity

Thanks to Theorem A, we may reconsider Yasuda's original question for normal toric
varieties: the Nash blowup of order n of a normal toric variety is non-singular for n large
enough?
It was already proved by R. Toh-Yama [TY19] that if X = V(xy − z4) ⊆ C3, then

Nashn(X) is singular for all n. In this section, we extend this result to prime characteristic.
The results presented in this section are based on the work of R. Toh-Yama [TY19].

Notation 3.1. Throughout this section we use the following notation:

• σ ⊆ R2 is the cone generated by (0, 1) and (4,−3).
• σZ := σ̌ ∩ Z2 = N((1, 0), (3, 4), (1, 1)).
• Jn := 〈u− 1, u3v4 − 1, uv − 1〉n+1 ⊆ K[u, u3v4, uv].
• � denotes the monomial order on K[u, u3v4, uv] de�ned by the matrix(

2 −1
1 1

)
.

• Let Gn be the reduced and marked Gröbner basis of Jn with respect to �.
• Let lm(Gn) := {α ∈ Z2|(g, α) ∈ Gn}
• Let pol(Gn) := {g ∈ K[u, u3v4, uv]|(g, α) ∈ Gn}.
• X = V(xy − z4) ⊆ K3 (the A3-singularity).

According to Theorem 2.8, the normalization of the Nash blowup of order n of X is
determined by the Gröbner fan of Jn. It was recently shown that, if K = C, this Gröbner
fan contains a non-regular cone for each n. This implies that Nashn(X) is singular for
every n [TY19, Theorem 2.21]. We show that the same cone appears in GF(Jn) for an
arbitrary �eld.
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De�nition 3.2 ([TY19, De�nition 2.4]). For n ∈ Z+, let Pn be the subset of σZ consisting
of the following points:
For odd n,

pn := (n+3
2
, 0),

q0n := (n+3
2
, 1) + n−1

2
(1, 2), qin := q0n − i(1, 2) (0 ≤ i ≤ n−1

2
),

r0n := q0n + (0, 1), rjn := r0n + j(1, 2) (0 ≤ j ≤ n−1
2

),

sn := n+1
2

(3, 4).

For even n,

pn := (n+2
2
, 0),

q0n := (n+2
2
, 0) + n

2
(1, 2), qin := q0n − i(1, 2) (0 ≤ i ≤ n−2

2
),

r0n := q0n + (0, 1), rjn := r0n + j(1, 2) (0 ≤ j ≤ n
2
),

sn := n+2
2

(3, 4).

The following result is a key ingredient towards proving that Nashn(X) is singular for
all n, in the case K = C.

Proposition 3.3 ([TY19, Proposition 2.15]). Consider Notation 3.1 and De�nition 3.2.
Assume that K = C. Then, lm(Gn) = Pn.

We also need the following property of the set Pn, which is very useful for inductive
arguments.

Lemma 3.4 ([TY19, Lemma 2.6]). Consider Notation 3.1 and De�nition 3.2. Let θ :
σZ → σZ, a 7→ a+ (1, 1). Then, for n ∈ N, n ≥ 2,

Pn =

{
θ(Pn−1 \ {pn−1}) t {pn, sn}, n even,
θ(Pn−1 \ {sn−1}) t {pn, sn}, n odd.

Our �rst goal is to show that pol(Gn) ⊆ Z[u, u3v4, uv] in the case K = C. In order to
prove this fact we need the following three lemmas.

Lemma 3.5. Consider Notation 3.1 and De�nition 3.2. Let n ∈ N be odd. There exists
gn ∈ Jn ∩ Z[u, u3v4, uv] such that lc(gn) = 1 and lm(gn) = sn.

Proof. We know that g1 := u3v4 + u − 4uv + 2 ∈ J1 ∩ Z[u, u3v4, uv], lc(g1) = 1, and
lm(g1) = (3, 4) = s1 [TY19, Proposition 2.13]. Now de�ne, for n ≥ 3, gn := (g1)

n+1
2 . Then

gn ∈ (J1)
n+1
2 = Jn, gn ∈ Z[u, u3v4, uv], lc(gn) = 1, and lm(gn) = n+1

2
(3, 4) = sn. �

Lemma 3.6. Consider Notation 3.1 and De�nition 3.2. Let n ∈ N be even. There exists
hn ∈ Jn ∩ Z[u, u3v4, uv] such that lc(hn) = 1 and lm(hn) = pn.

Proof. For n = 2, we take

h2 : = u2 − 4u2v − u3v4 + 6u2v2 + u− 4uv + 1

= (−1)(u− 1)2(u3v4 − 1) + (u2v2 + 2uv + 3)(u− 1)(uv − 1)2 + (−uv − 3)(uv − 1)3.

Then h2 satis�es the conditions of the lemma. From the previous lemma we know that
g1 = u3v4 + u− 4uv + 2 ∈ J1 and lm(g1) = s1. With a computer algebra system one can
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check that the following polynomials satisfy the conditions of the lemma:

h4 := g1h2 − (u− 1)(uv − 1)4 = u3 − 4u5v5 + (smaller terms),

h6 := g1h4 − (uv − 1)4h2 = u4 − 4u8v9 + (smaller terms),

h8 := g1h6 − (uv − 1)4h4 = u5 − 4u11v13 + (smaller terms).

Now de�ne hn := g1hn−2 − (uv − 1)4hn−4 for n ≥ 10. Assume n = 2k. We claim:

(i) g1hn−2 = uk+3v4 + uk+1 − 4u5+3(k−2)v5+4(k−2) + (smaller terms).
(ii) (uv − 1)4hn−4 = uk+3v4 − 4u4+5+3(k−4)v4+5+4(k−4) + (smaller terms).
(iii) hn = uk+1 − 4u5+3(k−2)v5+4(k−2) + (smaller terms).

We proceed by induction on k. The cases k = 5, 6 can be checked with any computer
algebra system. Assume the result is true for k ≥ 6. Then, we have that

g1hn = (u3v4 + u− 4uv + 2)(uk+1 − 4u5+3(k−2)v5+4(k−2) + (smaller terms)

= uk+4v4 − 4u5+3(k−1)v5+4(k−1) + uk+2 − 4u1+5+3(k−2)v5+4(k−2) + (smaller terms)

for k + 1. A direct computation shows that

(k + 4, 4) � (k + 2, 0) � (5 + 3(k − 1), 5 + 4(k − 1)) � (1 + 5 + 3(k − 2), 5 + 4(k − 2)).

Therefore,

g1hn = uk+4v4 + uk+2 − 4u5+3(k−1)v5+4(k−1) + (smaller terms).

Thus, (i) holds. In exactly the same way (ii) and (iii) can be veri�ed. Finally, we note
that for n ≥ 10, n = 2k, by de�nition and the claim, hn ∈ Jn ∩ Z[u, u3v4, uv], lc(hn) = 1
and lm(hn) = (k + 1, 0) = (n+2

2
, 0) = pn. �

In the following result we use the notation from the two previous lemmas.

Lemma 3.7. Consider Notation 3.1 and De�nition 3.2. Let

G1 := {g1, (uv − 1)2, (u− 1)(uv − 1), (u− 1)2},
and

G2 := {(uv − 1)f |f ∈ G1 \ {(u− 1)2}} ∪ {h2, (u3v4 − 1)g1}.
Now de�ne recursively

n odd: Gn := {(uv − 1)f |f ∈ Gn−1 \ {(u3v4 − 1)gn−2}} ∪ {(u− 1)hn−1, gn},
and

n even: Gn := {(uv − 1)f |f ∈ Gn−1 \ {(u− 1)hn−2}} ∪ {(hn, (u3v4 − 1)gn−1}.
Then, for each n ≥ 1, Gn ⊆ Jn ∩ Z[u, u3v4, uv], the elements of Gn have all leading
coe�cient 1, and lm(Gn) = Pn.

Proof. By construction and Lemmas 3.5 and 3.6, Gn ⊆ Jn∩Z[u, u3v4, uv] and its elements
have all leading coe�cient 1. It remains to prove that lm(Gn) = Pn.
Let n = 1. By Lemma 3.5, lm(g1) = s1. The leading monomials of the other three

elements of G1 coincides with the remaining elements of P1. Now let n = 2. It is clear
that lm((u3v4 − 1)g1) = s2. By Lemma 3.6, lm(h2) = p2. For the other elements of G2

we have lm((uv − 1)f) = lm(f) + (1, 1). By Lemma 3.4, we conclude that lm(G2) = P2.
Assume the result for n− 1.
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If n is odd, by Lemma 3.6, lm((u−1)hn−1) = (1, 0)+pn−1 = (1, 0)+(n+1
2
, 0) = (n+3

2
, 0) =

pn. By Lemma 3.5, lm(gn) = sn. For the other elements of Gn we have lm((uv − 1)f) =
lm(f) + (1, 1). In addition, by Lemma 3.5, lm((u3v4 − 1)gn−2) = (3, 4) + sn−2 = (3, 4) +
n−1
2

(3, 4) = n+1
2

(3, 4) = sn−1. By Lemma 3.4, we conclude that lm(Gn) = Pn.
If n is even, lm(hn) = pn by Lemma 3.6. By Lemma 3.5, lm((u3v4 − 1)gn−1) = (3, 4) +

sn−1 = (3, 4) + n
2
(3, 4) = n+2

2
(3, 4) = sn. For the other elements of Gn we have lm((uv −

1)f) = lm(f) + (1, 1). In addition, by Lemma 3.6, lm((u − 1)hn−2) = (1, 0) + pn−2 =
(1, 0) + (n

2
, 0) = (n+2

2
, 0) = pn−1. By Lemma 3.4, we conclude that lm(Gn) = Pn. �

Proposition 3.8. Consider the Notation in Lemma 3.7, and assume that K = C. Then,
pol(Gn) ⊆ Z[u, u3v4, uv].

Proof. According to Proposition 3.3, lm(Gn) = Pn. By Lemma 3.7, Gn ⊆ Jn∩Z[u, u3v4, uv],
the leading coe�cient of all of its elements is 1, and lm(Gn) = Pn. It follows that Gn is a
minimal Gröbner basis of Jn. Since Gn ⊆ Z[u, u3v4, uv] and the algorithm to turn Gn into
a reduced Gröbner basis takes place in Z[u, u3v4, uv], it follows that the resulting reduced
Gröbner basis is contained in Z[u, u3v4, uv]. By the uniqueness of the reduced Gröbner
basis, we conclude that pol(Gn) ⊆ Z[u, u3v4, uv]. �

This proposition is the �rst step towards proving that the Gröbner fan of Jn contains
a non-regular cone for each n. The following lemma is proved by R. Toh-Yama [TY19] in
the case K = C; however, the proof is the same over any �eld. We reproduce it here for
the sake of completeness.

Lemma 3.9 ([TY19, Lemma 2.12(1)]). Consider Notation 3.1 and De�nition 3.2. Then,

dimK K[u, u3v4, uv]/ in�(Jn) = dimKK[u, u3v4, uv]/〈Pn〉.

Proof. First, it is known that dimK K[u, u3v4, uv]/ in�(Jn) = dimKK[u, u3v4, uv]/Jn [Dua13,
Proposition A.2.1]. Let J0 = 〈u− 1, u3v4− 1, uv− 1〉. Then J0 = 〈u− 1, uv− 1〉, because

u3v4 − 1 = (u3v3 + u2v2 + uv + 1)(uv − 1)− u3v4(u− 1).

In addition, K[u, u3v4, uv]J0 is a regular local ring of dimension two since (1, 1, 1) ∈ X is
non-singular. There is an isomorphism of graded K-algebras:

K[x1, x2] ∼= grJ0K[u,u3v4,uv]J0
(K[u, u3v4, uv]J0)

∼= grJ0(K[u, u3v4, uv]),

where x1 7→ [u− 1 mod J2
0 ] and x2 7→ [uv − 1 mod J2

0 ]. Hence

dimK K[u, u3v4, uv]/Jn = dimKK[x1, x2]/〈x1, x2〉n+1 =
1

2
(n+ 1)(n+ 2).

On the other hand, dimK K[u, u3v4, uv]/〈Pn〉 = |σZ \ (Pn +σZ)|. This last set corresponds
to the monomials in K[u, u3v4, uv] not divisible by any monomial in Pn. In addition,
|σZ \ (Pn + σZ)| = 1

2
(n+ 1)(n+ 2) [TY19, Lemma 2.10(2)]. This concludes the proof. �

Notation 3.10. Consider the following notation:

• J (0)
n denotes the ideal Jn ⊆ C[u, u3v4, uv].

• J (p)
n denotes the ideal Jn ⊆ K[u, u3v4, uv], where the characteristic of K is p > 0.

• G(0)
n denotes the Gröbner basis Gn of J (0)

n of Notation 3.1.
• G(p)

n denotes the Gröbner basis Gn of J (p)
n of Notation 3.1.
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• G(0)
n mod p := {(g(p), α)|(g, α) ∈ G(0)

n }, where g(p) ∈ K[u, u3v4, uv] is de�ned as
follows. Let g(p) ∈ Zp[u, u3v4, uv] denote the polynomial g whose coe�cients are
taken modulo p (this makes sense by Proposition 3.8). Then g(p) denotes the
polynomial induced by g(p) via j : Zp ↪→ K. Notice that lm(g(p)) = α = lm(g)
since the coe�cient of the leading monomial of g is 1.

Proposition 3.11. Consider Notation 3.10. Then,

G(p)
n = G(0)

n mod p.

Proof. We want to show that G(0)
n mod p is the reduced and marked Gröbner basis of

J
(p)
n . We know that pol(G(0)

n ) ⊆ J
(0)
n . Therefore, by construction, pol(G(0)

n mod p) ⊆ J
(p)
n .

Since the leading coe�cients of the elements of pol(G(0)
n ) are all 1, by Proposition 3.3,

〈Pn〉 = 〈lm(G(0)
n mod p)〉 ⊆ in�(J (p)

n ).

By Lemma 3.9, it follows that 〈lm(G(0)
n mod p)〉 = 〈Pn〉 = in�(J

(p)
n ), implying that

pol(G(0)
n mod p) is a Gröbner basis of J (p)

n . Since lm(G(0)
n mod p) = lm(G(0)

n ) and the
support of each element of G(0)

n mod p is contained in the support of the corresponding
element of G(0)

n , we conclude that G(p)
n = G(0)

n mod p. �

Notation 3.12. Consider the following notation:

CG(0)
n

:={w ∈ σ|(α− β) · w ≥ 0, for all (g, α) ∈ G(0)
n , β ∈ supp(g) \ {α}},

CG(p)
n

:={w ∈ σ|(α− β) · w ≥ 0, for all (g(p), α) ∈ G(p)
n , β ∈ supp(g(p)) \ {α}}.

The following statement is purely combinatorial, and so, it is independent of the
characteristic of the �eld K.

Proposition 3.13 ([TY19, Theorem 1.17]). Consider Notation 3.10 and 3.12. Then

CG(0)
n

(respectively, CG(p)
n
) is a maximal cone of GF(J

(0)
n ) (respectively, GF(J

(p)
n )).

Theorem 3.14 ([TY19, Theorem 2.21]). Consider Notation 3.10 and 3.12. Let n ∈ Z+.

Then CG(0)
n

is a non-regular cone of GF(J
(0)
n ). In particular, Nashn(X) is a singular

variety, where X ⊆ C3.

Our goal is to prove that CG(p)
n

is a non-regular cone. Notice that CG(0)
n
⊆ CG(p)

n
by

de�nition and Proposition 3.11. However, this inclusion is not enough to show that CG(p)
n

is non-regular. To that end, we actually prove that CG(0)
n

= CG(p)
n
.

Notice that the following statements are purely combinatorial, therefore, they are
independent of the characteristic of the �eld K.

Lemma 3.15 ([TY19, Lemmas 1.16,2.16]). Consider Notation 3.10 and 3.12. Then

(1) (2,−1) ∈ CG(p)
n
.

(2) Let w ∈ CG(p)
n
∩Z2, w 6= (0, 0). If there exists (g(p), α) ∈ G(p)

n and β ∈ supp(g(p)) \
{α} such that (α− β) · w = 0, then w is a ray of CG(p)

n
.

In the work of R. Toh-Yama [TY19, Propositions 2.18,2.20], the generating rays of
CG(0)

n
are given explicitly. A similar strategy, along with Proposition 3.11, gives the

corresponding result for CG(p)
n
.
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Proposition 3.16 ([TY19, Propositions 2.18,2.20]). Consider Notation 3.10 and 3.12.
Let L1 := R≥0(2,−1) and

L2 :=

{
R≥0(2n− 2,−n+ 2), n odd,
R≥0(2n,−n+ 1), n even.

Then L1 and L2 are the rays of CG(p)
n
.

Proof. We start with L1. By Lemma 3.15, (2,−1) ∈ CG(p)
n
. Now consider the polynomial

fn := (uv − 1)n−1g1 ∈ J (0)
n (recall that g1 = u3v4 + u − 4uv + 2). In the proof of [TY19,

Proposition 2.18] it is shown that (fn, (uv)n−1u3v4) ∈ G(0)
n . In addition, (uv)n−1u is a

monomial of fn and it has 1 as coe�cient. By Proposition 3.11, (f
(p)
n , (uv)n−1u3v4) ∈ G(p)

n

and (uv)n−1u is in the support of f (p)
n . Since

[((n− 1)(1, 1) + (3, 4))− ((n− 1)(1, 1) + (1, 0))] · (2,−1) = 0,

we conclude that L1 is a ray of CG(p)
n

by Lemma 3.15.
Now consider:

ln :=

{
(2n− 2,−n+ 2), n odd,
(2n,−n+ 1), n even.

A direct computation shows that ln ∈ σ. In the proof of [TY19, Proposition 2.20] it is
shown that ln · (α−β) ≥ 0 for any (g, α) ∈ G(0)

n and any β ∈ supp(g)\{α}. In particular,
by Proposition 3.11, the same statement holds for the elements of G(p)

n . It follows that
ln ∈ CG(p)

n
. To prove that ln de�nes a ray of CG(p)

n
we proceed as in the previous paragraph.

There exists an element (g, α) ∈ G(0)
n such that: α = q

n−1
2

n & r
n−1
2

n ∈ supp(g) if n is odd,
and α = pn & sn−1 ∈ supp(g) if n even. In addition, in the same work it is shown

that both monomials r
n−1
2

n ∈ supp(g) (n odd) and sn−1 ∈ supp(g) (n even) have -1 as

coe�cient. As before, it follows that (g(p), α) ∈ G(p)
n , r

n−1
2

n ∈ supp(g(p)) \ {α} if n is odd

and sn−1 ∈ supp(g(p))\{α} if n is even. Finally, ln ·(q
n−1
2

n −r
n−1
2

n ) = 0 and ln ·(pn−sn−1) = 0
[TY19, Lemma 2.10(7)]. By Lemma 3.15, we conclude that L2 is a ray of CG(p)

n
. �

All previous results have as a consequence:

Theorem 3.17. Let n ∈ Z+. Then CG(p)
n

is a non-regular cone of GF(J
(p)
n ). In particular,

Nashn(X) is a singular variety, where X = V(xy − z4) ⊆ K3.

Proof. Combining work of R. Toh-Yama [TY19, Propositions 2.18,2.20] and Proposition
3.16 we deduce that CG(0)

n
= CG(p)

n
. By Theorem 3.14, we conclude that CG(p)

n
is a non-

regular cone. �
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