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Abstract. The effect of particle size distribution and particle size ratio of SiCp in SiCp/SiO2 

preforms on the microstructure, microhardness of SiCp reinforcements, modulus of rupture, 

and superficial hardness of Al/SiCp composites produced by pressureless infiltration has been 

investigated. SiCp/SiO2 preforms in the form of plates (4cm x 3cm x 0.5cm) have been 

pressureless infiltrated by the alloy Al-15.52 Mg-13.62 Si (wt. %) at 1100 
o
C for 60 min 

under inert atmosphere. SiC powders with average particle size of 10, 68 and 140 µm are 

mixed with SiO2 powders and preforms of 40 % porosity with unimodal, bimodal and 

trimodal size distributions are prepared by uniaxial compaction. The bimodal (small: large) 

and trimodal (small: medium: large) preforms are prepared with different particle size ratios 

in the following levels: 1:1, 3:1, 1:3, 2:2:2, 3:2:1, 3:1:2. Results from characterization by 

XRD, SEM and energy dispersive X-ray spectrometry show that the typical microstructure of 

the composites contains the MgAl2O4  (spinel), AlN and MgO phases formed during 

processing as well as partially reacted silica, SiC, Si and Al. It is found that the density, 

reinforcement microhardness, modulus of rupture and superficial hardness of the composites 

increase all with wider particle size distribution. However, whilst the modulus of rupture is 

mainly affected on going from unimodal and bimodal to trimodal distribution, superficial 

hardness and microhardness are mostly influenced on going from unimodal to bimodal and 

trimodal distribution.  

Introduction 

Aluminum matrix composites with a high volume fraction of a ceramic reinforcement have 

been the subject of intense investigations in the last years due to improved strength, stiffness, 

thermal conductivity, abrasion resistance and dimensional stability. The Al/SiC system has 

attracted the attention of many researchers particularly for those applications demanding a 

low coefficient of thermal expansion (CTE) and a high thermal conductivity [1-3]. It is well 

known that in order to achieve large volume fractions of the ceramic in a metal/ceramic 

composite, it is necessary to use reinforcements of substantially different sizes [3-6]. From the 

available processing techniques for the production of metal matrix composites, the infiltration 

of ceramic preforms by liquid metals is the most convenient route for the manufacture of 

composites with a high volume fraction of the reinforcements. By the infiltration route, it is 

possible to produce near-net shape composites with high dimensional stability and a uniform 

distribution of the reinforcements. 

Most of the work done on the fabrication of composites with a high volume fraction of 

reinforcements has been connected to the pressure- or vacuum-assisted infiltration techniques 

[3-6]. However, in order to abate processing costs, the development of alternative non-

assisted or pressureless infiltration routes is of paramount importance. The feasibility of 
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producing Al/SiC composites with thermal conductivities similar to those exhibited by 

aluminum alloys has been reported by Arpón et al. [3] from investigations with pressure-

assisted infiltration, and Cui [7] reported the fabrication of Al/SiC composites with a SiC 

volume fraction of 0.68 by the pressureless infiltration technique. However, an inconvenience 

of the method is that long processing times are used for the preparation of the preforms (5 hr) 

and the composites (1-3 hr) [7].  

In order to take advantage of the thermal properties (CTE and thermal conductivity) of 

Al/SiC composites with high volume fractions of the reinforcements, it is also of vital 

importance to fully characterize the mechanical properties of the composites. The aim of this 

work was to investigate the effect of particle size distribution and particle size ratio of SiCp in 

SiCp/SiO2 preforms on the microstructure, microhardness of SiCp reinforcements, modulus of 

rupture, and superficial hardness of Al/SiCp composites produced by pressureless infiltration.  

Experimental Procedure 

Preforms with a SiCp volume fraction of 0.60 were prepared with silicon carbide powders of 

three different particle sizes [10 (small), 68 (medium) and 140 (large) µm], three different 

particle size distributions (unimodal, bimodal and trimodal) and different particle size ratios 

for bimodal (small: large) and trimodal (small: medium: large) distributions: 1:1, 3:1, 1:3, 

2:2:2, 3:2:1, 3:1:2. The designation for particle size ratio involves both the type of preform 

(bimodal or trimodal) and the proportion of each particle size. For instance, 3:1:2 stands for a 

trimodal preform made of three parts of small, one part of medium and two parts of large SiC 

particles. Unimodal preforms are designated with only the corresponding particle size. The 

SiC powders were mixed with 10 wt.% of SiO2 powders (particle size, 346 µm) and 8 wt.% of 

dextrin as a binder. The mixtures were placed into a steel mold and uniaxially compacted 

using a pressure of about 3.5 MPa to produce preforms with the geometry of plates of 3 x 4 x 

0.5 cm. With the aim of partially eliminating the dextrin, the preforms were heated in an air 

furnace for two hours at 125 ºC and then for two more hours at 225 ºC. An Al-Mg-Si alloy 

was fabricated in an induction furnace with commercial Al, Mg and Si materials. Table 1 

shows the chemical composition of the fabricated alloy. 

  

Table 1 Chemical composition of the aluminium alloy [wt.%]. 
Al  Mg  Si  Fe  Mn Zn Others  

Balance 15.5 13.6 0.99 0.15 0.13 2.61 

 

Infiltration trials were performed in a tube furnace with control of the process atmosphere. 

The preform and alloy were placed in a ceramic container and the whole assembly was 

positioned in the furnace. The system was heated at a rate of 15 ºC/min up to 1100 º C, held at 

this temperature for 60 min and then cooled down at the same rate to room temperature. In 

order to enhance the wetting of the preform by the liquid alloy during heat up, a change in the 

processing atmosphere (Ar →N2) was made on reaching 1000 ºC. Once the system was 

cooled down to room temperature, the composites were prepared for physical, mechanical and 

microstructural characterization. The density was evaluated using Archimedes´ principle. 

Specimens were characterized by X-ray diffraction (XRD), optical microscopy (OM), 

scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). 

Mechanical characterization was conducted using four-point bending tests (ASTM C1161-94 

standard) and Rockwell superficial hardness. Vickers microhardness tests were performed on 

SiC particles of 68 (medium) and 140 (large) µm incorporated into the composites. 
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Results and Discussion  

Phase Analysis and Microstructure. Results from XRD reveal the presence of the MgAl2O4, 

AlN, MgO and Mg2Si phases formed during processing, in addition to Al, Si and SiC. These 

phases were formed regardless of the particle size distribution and particle size ratio. A typical 

XRD pattern from a composite specimen with bimodal size distribution is shown in Fig. 1. It 

is noteworthy that the unwanted Al4C3 phase is not detected in the composites microstructure.  

 
Figure 1.  XRD pattern of a composite with bimodal size distribution (1:1) (SiC, 10 and 140 

µm).  

 

The magnesium aluminate (spinel) is formed by the reaction of the silica added to the 

preforms with magnesium and aluminum in the alloy, according to: 

 

2 Al(l) + 2 SiO2(s) + Mg(l)  =  MgAl2O4(s) + 2 Si(s)                                        (1) 

 

Analysis by SEM shows that, in a typical microstructure of the composites, the spinel is 

present at the periphery of partially reacted SiO2 particles. Figure 2 shows the typical 

microstructure of the composites and Figure 3a is a photomicrograph showing a partially 

reacted particle of SiO2. Figure 3b is an EDX spectrum on the region corresponding to 

MgAl2O4.  

 

 
Figure 2. SEM photomicrograph showing the typical microstructure of the 

composites. 

 

Effect of particle size distribution on density. Figure 4 shows the effect of particle size 

distribution on the composites density. In this and the subsequent figures, the numbers 1, 2 

and 3 in the X-axis refer to unimodal, bimodal and trimodal distributions, respectively. The 
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measured densities (in the range from 2.77 to 2.91 g/cm
3
) are similar to those reported by 

Chen et al.  for  composites  prepared  by  the pressure-assisted  infiltration technique [6]. The 
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Figure 3. (a) SEM photomicrograph showing a partially reacted SiO2 particle, and (b) EDX 

spectrum in a zone corresponding to MgAl2O4. 

 

change in the density of the composites with different particle size distributions is explained 

in terms of the degree of packing attained when using particles with different sizes in the 

preforms. In regard to the influence of the particle size ratio in a given preform on the density 

of the composites, no significant effect is observed. 

 
Figure 4.  Average densities of the composites as a function of particle size distribution. 

 

Modulus of rupture (MOR). Results from four-point bending tests reveal that the MOR 

does not significantly increase when the size distribution varies from unimodal to bimodal. 

However, an increase of about 16 % is observed when a change is made to trimodal size 

distribution, as shown in Fig. 5. The average values of the moduli of rupture of the 

composites are 117 ± 8, 119 ± 17 and 145 ± 13 for unimodal, bimodal and trimodal size 

distributions, respectively. Typical values of MOR for some specimens are shown in Table 2.  
 

Table 2. Modulus of rupture of composites with 

different size distribution of reinforcements.  

Particle size ratio and 

distribution 

MOR [MPa] 

Unimodal  (68 µm) 117 ± 8 

1:1 136 ±17 

1:3 102 ±18 

3:1:2 129 ±12 

3:2:1 113 ± 14 

2:2:2 194 ± 10 
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Figure 5. Modulus of rupture as a function of 

particle size distribution. 
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Fracture surface analysis revealed that, irrespective of the size distribution, there existed 

good bonding between the aluminum matrix and the SiC reinforcements. Figure 6 exemplifies 

the typical fracture surface in the composites, showing the aluminum matrix and a SiC 

particle.  

 

 
 

Figure 6.  SEM photomicrograph showing the aluminum matrix and a SiC particle on the 

fracture surface of a 2:2:2 specimen. 

  

Superficial hardness. Rockwell hardness tests revealed that the superficial hardness of 

the composites increases in the order unimodal→ bimodal → trimodal size distribution, the 

average values being 39 ± 3, 63 ± 3 and 66 ± 1 RH30N, respectively. As shown in Fig. 7, 

although the change in hardness between the bimodal and the trimodal distributions is not 

significant, a considerable increase is observed on going from unimodal to bimodal or 

trimodal distributions. This behavior can be explained in terms of the plastic deformation of 

the matrix. It is considered that during indentation the matrix will undergo plastic deformation 

while the SiC particles start interfering with one another up to the point where impingement 

limits the matrix plastic flow. It is also assumed that after the SiC particle impingement, the 

situation will be governed by the hardness of SiC. In this context, once the matrix has totally 

deformed, the hardness will remain nearly constant.  

 

 
Figure 7.  Superficial hardness as a function of particle size distribution.  

 

Vickers microhardness in SiCp. Results from the Vickers microhardness tests in medium 

and large SiC particles reveal that the microhardness increases with increasing particle size, 

being the effect more evident on going from unimodal to bimodal and trimodal distributions 

(see Fig. 8). However, an explanation for this behavior can not be given from our current 

results. The average hardness of SiC in composites with unimodal, bimodal and trimodal size 

distributions of reinforcements is 2339 ± 223, 3360 ± 320 and 3464 ± 368 kg/mm
2
, 

respectively. Figure 9 is a photomicrograph showing typical indentations on the SiC particles.  
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Figure 8. Microhardness of SiCp as a function of  

particle size distribution. 

  
Figure 9. Indentation in a SiC particle  

of 68 µm. 
 

Summary and Conclusions 

Al/SiCp composites with multimodal size distributions of reinforcements have been produced 

by the pressureless infiltration route. The microstructure of the composites is characterized by 

the presence of the phases MgAl2O4, MgO, AlN and Mg2Si, which were formed during 

processing, in addition to Al, SiC, SiO2 and Si. It was found that the density, SiCp 

microhardness, superficial hardness and modulus of rupture of the composites increase all 

with wider particle size distributions. The effect of particle size distribution on the superficial 

hardness is explained in terms of the plastic deformation experienced by the metallic matrix 

and the blockage between particles during indentation. However, more detailed studies would 

be required to elucidate the effect of size distribution on the microhardness of SiCp. 
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