ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Immobilized particle coating for optimum photon and TiO₂ utilization in scaled air treatment photo reactors

Cristina S. Lugo-Vega a, Benito Serrano-Rosales b, Hugo de Lasa a,*

- ³ Chemical Reactor Engineering Centre (CREC), Faculty of Engineering Science, Department of Chemical And Biochemical Engineering, University of Western Ontario, London, Ontario, N6A 589, Canada
- b Unidad Académica de Ciencias Químicas, Programa de Ingeniería Química, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Campus UAZ Siglo XXI, 98168. Mexico

ARTICLE INFO

Article history: Received 21 February 2016 Received in revised form 4 May 2016 Accepted 25 May 2016 Available online 27 May 2016

Keywords:
Air treatment
Photocatalysis
VOC
Acetone
Quantum yield
TiO₂ immobilization methods

ABSTRACT

This study reports the critical importance of the particle state in TiO_2 immobilized photocatalysis. To address this, TiO_2 coatings are prepared using two methods; an Air Assisted Spray with an Automatized Spinning Coating (TiO_2 -AAS-ASC) and a Spread Coating (TiO_2 -SCM). The state of the TiO_2 particles is investigated using SEM and local gravimetry. It is proven that the TiO_2 -AAS-ASC displays homogeneity, limited particle agglomeration, close to optimum thickness and stability under flow, Furthermore, the prepared coatings are evaluated in terms of photoactivity using acetone in air mineralization in the 24–49 μ mol/L initial concentration range, This allows Quantum Efficiency evaluations based on absorbed photons and hydroxyl radical consumed. It is proven that the TiO_2 -AAS-ASC exhibits a close to expected optimum photoactivity and QYs in the 0.4–0.5 range. Furthermore, when the TiO_2 -AAS-ASC is assessed in terms of QY per unit weight of photocatalyst (QY/W), it shows a value 3 times higher than the TiO_2 -SCM. This high photon utilization is close to the best possible level expected for an optimized TiO_2 coating.