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CYP2D6 gene polymorphisms and predicted 
phenotypes in eight indigenous groups from 
northwestern Mexico

CYP2D6 is an important member of the CYP450 
family and is involved in the metabolism of many 
widely used drugs, including antidepressants, 
antipsychotics, antiarrhythmics, antiemetics, 
b-adrenoceptor antagonists (b-blockers) and 
opioids, which represent approximately 25% 
of all drugs metabolized by CYP450s [1–3]. In 
addition to the role of CYP2D6 genetic poly-
morphisms in drug metabolism, their poten-
tial implication in the risk for certain diseases 
(i.e., psychiatric disorders and cancer) has been 
discussed [4,5].

The CYP2D6 gene, located on chromosome 
22q13.1, is highly polymorphic, with over 100 
allelic variants identified to date [101]. Some 
of these alleles are associated with increased, 
decreased or absence of enzyme activity [6]. 
Among the alleles of CYP2D6 that exhibit nor-
mal or increased activity are *1, *2, *35, *1xN 
and *2xN; those with decreased activity are *10, 
*17, *29 and *41. Furthermore, *3, *4, *5 and 
*6 are inactive [3]. All of the above alleles are of 
clinical relevance, as they often cause adverse 
drug effects or lack of drug effect in stan-
dard doses. Genotyping for the most frequent 
CYP2D6 alleles in different populations can 
predict poor, extensive and ultrarapid metabolic 
phenotypes with some accuracy [7–10]. The most 
frequent nonfunctional alleles for Caucasians 

are CYP2D6*4, *5 and *3 and account for 95% 
of poor metabolizers (PMs) [11]. The ultrarapid 
metabolizer (UM) phenotype is found in 1–2% 
of Swedish Caucasians [12] and 29% of Ethio-
pians [13] with more than two functional copies 
of the gene.

Mexico is a country with high ethnic diver-
sity. Currently, there are 68 Amerindian tribes 
representing 7% of the Mexican population 
[102]. These groups have particular social, cul-
tural and genetic backgrounds that differ from 
the rest of the Mexican Mestizos (~93% of the 
total population). Therefore, it is predictable 
that Amerindian groups have a distinct drug 
response from populations with other genetic 
backgrounds.

CYP2D6 gene polymorphisms have been 
widely studied in several ethnic groups; how-
ever, they are less well known in the indigenous 
population. Until now the polymorphisms *2 
(20%), *3 (0%), *4 (0.6%), *5 (0.5%), *6 
(0%), *10 (0%), *35 (0%), *41 (1.0%) and 
duplications (1.0%) of CYP2D6 have been eval-
uated in indigenous Tepehuanos from Durango 
(northwest, Mexico) [9]. The PM phenotype was 
absent in this Amerindian group when tested 
with dextro methorphan [14]. In addition, only 
CYP2D6*4 was also detected in five Mexican 
Amerindian groups: Tarahumaras (north), 
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Purépechas (center), Tojolabales, Tzotziles 
and Tzeltales (southeast) (range: 1.2–7.3%) 
[15]. Recently, 14 novel variants were identified 
in Mexican Mestizos, including CYP2D6*82, 
which was hypothesized to be Amerindian ori-
gin because its identification in three Mexican 
Amerindian groups, Mixtecos (5%), Tepehua-
nos (3.3%) and Mayas (1.67%) [16]. A predicted 
CYP2D6 PM phenotype was lacking in the 
Mexican Amerindian population, while the fre-
quency in Mexican Mestizos is 2–3.6% [14,15,17]. 
Little is known about the genetic variation of 
CYP2D6 in indigenous populations northern-
most from Mexico, which shows larger genetic 
distances from the rest of the Mexican popula-
tions [18]. Therefore, the aim of this work was to 
determine the allelic variants of CYP2D6 and 
the predicted phenotype in indigenous popula-
tions from northwest Mexico. This study will 
allow for the generation of pharmacological 
therapy strategies adapted to the indigenous 
populations of Mexico.

Materials & methods
�n Subjects

A total of 508 unrelated individuals belonging to 
eight different indigenous groups of northwest 
Mexico were studied. The sample included 129 
Tepehuanos, 107 Huicholes and 39 Mexi caneros 
from the state of Durango; 74 Tarahumaras 
from the state of Chihuahua; 81 Coras from the 
state of Nayarit; and 19 Seris, 15 Guarijíos and 
44 Mayos from the state of Sonora. Individuals 
identified themselves as belonging to an ethnic 
group by stating that their grandparents, their 
parents and they themselves belonged to that 
ethnic group. Moreover, Amerindian ancestry 
was confirmed in all the groups studied, through 
the ana lysis of 15 short tandem repeats loci [19].

The research was authorized by the ethics 
committee of the Durango General Hospital of 
the Mexican Health Ministry (year 2007). All 
subjects signed an authorized informed consent 
form. Table 1 shows general characteristics of the 
studied groups.

�n Genotyping
For genotyping, the CEIBA.FP Consortium 
methodology was followed [20]. All biological 
samples were taken from volunteers in the respec-
tive communities. A total of 5 ml of peripheral 
blood was drawn in a tube with EDTA, and 
DNA was extracted using the QIAamp® DNA 
blood kit (Qiagen, Hilden, Germany) and evalu-
ated for integrity and concentration through 1% 
agarose electrophoresis and spectrophotometry.

To detect the presence of allelic variants 
harboring a CYP2D6*5 gene deletion or gene 
duplication, long-range PCR was performed 
as previously described [21,22]. Subjects positive 
for a duplication were further characterized for 
gene copy number. Genotype ana lysis for the 
CYP2D6*2, *3, *4, *6, *10, *17, *29, *35, *41 
and CYP2D6 copy number variants was per-
formed by quantitative real-time PCR using Taq-
Man® assays in a StepOne™ system (Applied 
Biosystems, CA, USA). PCR amplification for all 
SNPs was performed in a 20 µl final volume with 
20 ng of template DNA, 1X TaqMan geno typing 
Master Mix (Applied Biosystems), 1X-specific 
TaqMan probe and water. Thermal cycling 
conditions were as follows: initial denaturation 
step of 10 min at 95°C followed by 40 cycles 
of denaturation at 92°C for 15 s and annealing 
at 60°C for 1 min. The identification of geno-
types was carried out using allelic discrimina-
tion software (Applied Biosystems). The Taq-
Man probes used to recognize the CYP2D6*2, 
*3, *4, *6, *10, *17, *29, *35, *41 and CYP2D6 
copy number variants were C_32407252_30, 
C _ 32407232 _ 50,  C _ 27102431_ D0, 
C _ 32407243 _ 20,  C _1148 4 4 60 _ 40, 
C _ 2 2 2 2 7 71 _ 4 0 ,  C _ 3 4 816113 _ 2 0 , 
C_34816116_20, C_27102444_80 and 
Hs00010001_cn, respectively (specifically tar-
gets CYP2D6 exon 9 sequences and will not 
amplify CYP2D7 or CYP2D8 pseudogenes, or 
CYP2D6 alleles having CYP2D7 sequences in 
exon 9, e.g., CYP2D6*36 ).

The results of the allelic variants of CYP2D6 
were compared with a Mestizo population previ-
ously studied [9].

�n Data ana lysis
Hardy–Weinberg equilibrium was determined 
by comparing the genotype frequencies with 
the expected values using a contingency table 
c2 statistic with Yates’s correction. The allele 
and genotype frequencies were compared with 
c2 and Fisher’s exact tests. Phenotype prediction 
from genotype was evaluated using the activity 
score [23]. A value of 1 was assigned to refer-
ence alleles CYP2D6 *1, *2 and *35; a value of 
0 to CYP2D6*3, *4, *5 and *6 ; a value of 0.5 
to CYP2D6*10, *17, *29 and *41; and a value 
of 2 to multiplications of active CYP2D6 alleles 
(*1×N or *2×N ). The predictive phenotype 
was based on considering the individual activ-
ity score: subjects with activity score values of 
0.5 or 1.0 were defined as intermediate metabo-
lizers (IMs), which predicts considerably larger 
numbers of IMs than were actually observed by 
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phenotyping [23]; participants with values of 1.5 
or 2.0 were considered as extensive metabolizers 
(EMs), subjects with an activity score of 0 were 
considered PMs, and individuals with activity 
scores >2 were classified as UMs. Statistical 
analyses were carried out using Sigma Plot v11 
software (Systat Software, IL, USA).

Results
�n Allele frequencies

General characteristics of the Amerindians 
groups are summarized in Table 1. CYP2D6 allele 
frequencies for all the Amerindian populations 
included in the study are reported in Table 2.

The allele frequencies of CYP2D6*4 showed a 
wide variability between the studied Amerindian 
groups (range: 0–21%). Figure 1 shows a compari-
son of CYP2D6*4 alleles between our studied 
populations, other Amerindians groups, Mexi-
can Mestizos, Spaniards, Asians and Africans. 
The frequency of this allele was similar (~14%) 
between Mestizos from different states of Mex-
ico and showed high variability among different 
indigenous groups. The Tepehuanos showed the 
lowest CYP2D6*4 frequency (0.385%), similar to 
that reported in Asians [24], and the frequency in 
Coras was similar to that reported in Tojolabales 
from Chiapas, Mexico [15].

The Guarijío group had a similar CYP2D6*4 
allele frequency (3.3%) to the ones reported 
for Tzotziles of Chiapas, Mexico (2.7%) and 
Purépechas of Michoacán, Mexico (2.9%) [15] 
and a lower frequency than reported for Mapu-
ches from Chile (3.6%) [25] and Tzeltales from 
Chiapas (5.3%) [15].

In our study, the frequency of CYP2D6*4 in 
the Tarahumara and Tepehuano groups (10.1 
and 0.385%, respectively) was different than 
previously reported for these groups (7.3 and 
0.6%, respectively) [9,15].

The frequency of CYP2D6*4 in the Mayo 
group (7.95%) was similar to that reported 
previously in the Canadian Inuit population 
(6.7–8.3%) [26]. The Seri group presented the 
highest frequency of this allele (21%), simi-
lar to that reported previously in Spaniards 
(18.5%) [22].

�n Genotype frequencies
CYP2D6 allele and genotype frequencies were 
in Hardy–Weinberg equilibrium for all the 
studied populations. Genotype frequencies, 
activity score and predictive phenotype in the 
Amerindian populations and a previously stud-
ied Mexican Mestizo group [9] are displayed in 
Table 3. The second most frequent genotype 
after *1/*1 was *1/*2, with the highest value 
in the Cora population (35.8%). The predic-
tive EM phenotype was more frequent in the 
Tepehuanos, Coras and Mexicaneros (range: 
82.06–93.07%), and only the first two groups 
showed a higher EM phenotype frequency than 
the Mexican Mestizos (p < 0.001 and p = 0.014, 
respectively; Table 3). The predictive IM phe-
notype was significant between Mestizos and 
Mexicaneros, Seris, Tepehuanos and Tarahu-
maras (p-values <0.001–0.043). The predictive 
UM phenotype was more frequent in the Amer-
indian groups (except the Tepehuano group) 
than in Mexican Mestizos, but only the Huichol 
group displayed a statistically significant dif-
ference when compared with the Mestizos 
(p = 0.009). The Tarahumara group was the 
only Amerindian group that presented the pre-
dictive PM phenotype (*4/*5 genotype), with 
a frequency of 1.35%. No significant difference 
was found between the estimated frequencies 
of EM, IM and UM among Mexican Mestizos 
and the Amerindians; however, the frequency 
of the PM phenotype was statistically higher in 

Table 1. General characteristics of the studied Amerindians.

Groups n Age† (years) Gender (%) BMI† (kg/m2) Ancestry‡ (%)

Women Men

Mexicaneros 39 40.94 ± 12.53 64.1 35.9 24.74 ± 4.14 94.50

Tepehuanos 129 36.65 ± 13.45 66.1 33.9 22.21 ± 3.31 96.40

Huicholes 107 40.06 ± 16.55 60.8 39.2 22.32 ± 5.62 96.30

Coras 81 42.22 ± 21.42 64.5 35.5 25.64 ± 5.25 93.90

Guarijíos 15 57.4 ± 14.28 73.3 26.7 27.16 ± 6.72 81.60

Seris 19 53.84 ± 14.98 73.7 26.3 26.34 ± 5.11 88.00

Mayos 44 46.53 ± 17.44 74.4 25.6 27.96 ± 4.08 65.60

Tarahumaras 74 43.53 ± 13.10 67.6 32.4 24.03 ± 4.54 92.10
†Information is expressed as average ± standard deviation.
‡Amerindian ancestry [19].
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the Mexican Mestizos that in the Amerindians 
(p < 0.001).

discussion
Our results demonstrate a low frequency (<1%) 
of indigenous subjects with the PM genotype, in 
contrast to that observed in Mexican Mestizos 
(5%; p < 0.001); these data are consistent with 
the absence of PMs described in Cunas and Tepe-
huanos. Instead, the UM genotype was more 
frequent in indigenous populations (12.6%) 
than in Mestizos (7%). The PM genotype was 
identified only in the Tarahumara group, while 
the UM genotype was observed in all indigenous 
groups with considerable variation.

The low allelic diversity found in most of the 
studied ethnic groups could be masked because 
the small population sample of some of them 
(Guarijíos, Mayos and Seris), which is explained 
by the low response rate in these isolated com-
munities, and the missing evaluation of the vari-
ant CYP2D6*82 recently described in Mexican 
Amerindians [16].

We identified a low frequency of non functional 
CYP2D6 alleles in the indigenous groups stud-
ied, with the exception of the CYP2D6*4 allele, 
which was found with a relatively high frequency 
in Seris (21.05%), similar to that in the Ngawbe 
(17.1%) and Embera (14.0%) groups of Panama 
and Colombia, Mexican Mestizos (13.1–11.2%), 
and other indigenous groups from Mexico 
(1.2%–7.3%) SupplemenTary Table 1 (see www.future-
medicine.com/doi/suppl/10.2217/pgs.13.203) 
[9,10,15–17,25–33]. The CYP2D6*4 allele is of clinical 
significance and often causes altered drug clear-
ance and drug response accounting for 97% of all 
the PM phenotypes in Caucasians [11]. The inac-
tive CYP2D6*3 allele was detected in neither of 
these groups nor in other Amerindians [15,25–27,30] 

and is present at low frequencies in Asians and 
other studied populations [11].

The variant CYP2D6*5 was detected in four 
of the eight Amerindian groups studied (Tarahu-
mara, Cora, Tepehuano and Mexicanero) with 
a frequency similar to that reported in Mexican 
Mestizos (2.7–13.0%) [9,16,17]

The CYP2D6*6 allele is mainly observed in the 
Caucasian population (0.4–1.4%) [34] and was not 
expected to be found in this study, however it was 
observed in only one Mayo subject, which leads to 
questions about its pure indigenous ancestry. This 
is in agreement with a previous study intended to 
evaluate the ancestry component of these indig-
enous groups, revealing a higher proportion of 
European alleles in the Mayo population [19].

CYP2D6*10 is an allele associated with 
decreased enzyme activity; it was found in only 
one Tarahumara subject (0.7%) in this study. 
This is in agreement with the data reported by 
Salazar-Flores et al., who did not detect this allele 
in the five Mexican indigenous populations they 
studied [15]. By contrast, this allele has been 
reported at varying frequencies in the indigenous 
populations of Argentina, Paraguay, Venezuela, 
Chile, Colombia and Canada (SupplemenTary Table 1) 

[25–27,31], with frequencies exceeding 50% in 
Asian populations [24].

Previous studies showed the presence of the 
CYP2D6*35 allele in Caucasian populations 
with a frequency of 7.4% [35]. This allele has been 
found in Mexico with a frequency of 4.1% in 
Mestizo populations from the northwest [9,16,17]. 
We did not observe such alleles in any of the 
indigenous populations analyzed which makes 
them potentially useful markers for identifying 
Caucasian ancestry.

The range of frequencies of multiplications of 
functional alleles fluctuated between 4.3–10.7% 

Table 2. CYP2D6 allele frequencies among Mexican–Amerindian populations.

CYP2D6 alelles Mexicaneros 
(n = 39)

seris 
(n = 19)

Guarijíos 
(n = 15)

Tepehuanos 
(n = 129)

Mayos 
(n = 44)

Huicholes 
(n = 107)

Tarahumaras 
(n = 74)

Coras 
(n = 81)

*1 0.697 0.69 0.64 0.739 0.67 0.61 0.523 0.648

*2 0.22 0.05 0.23 0.2 0.1 0.21 0.21 0.28

*4 0 0.21 0.03 0.003 0.08 0.07 0.115 0.01

*5 0.013 0 0 0.004 0 0 0.034 0.012

*6 0 0 0 0 0.03 0 0 0

*10 0 0 0 0 0 0 0.007 0

*3, *17, *35 and *29 0 0 0 0† 0 0 0 0

*41 0 0 0 0.004 0.03 0 0.041 0.01

Multifunctional alleles 0.077 0.053 0.1 0.054 0.09 0.107 0.067 0.043
†CYP2D6*29 nonevaluated for this ethnic group.
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in the studied groups, which is similar to those 
reported in Mexican Mestizos (4.1–12.8%) [17].

Homozygosity for inactive alleles *4/*5 was 
found in only one Tarahumara subject (1.35%); 
a frequency similar to that reported in Japanese 
people (1%) [36] but lower than that reported for 
Embera (2.2%), Ngawbe (4.4%), Canadian Inu-
its (3.3%) [26] and Mexican Mestizos (6.8–10%) 
[14,17] populations. IMs are phenotypically tough 
to discriminate and are defined by the presence of 
genotypes with reduced function alleles. The high 
frequency observed in Seris (41.2%) and Mayos 
(22.7%) of such alleles is consistent with that 
observed in Asian (50%) [36,37] and indigenous 
populations of Venezuela (35%) [30]. The high fre-
quency of IMs among the Seris and Mayos makes 
them more susceptible to presenting adverse 
events when they are medicated with CYP2D6 
substrates, as has been reported in psychiat-
ric patients with the PM or IM phenotype [38]. 

Moreover, several antiarrhythmic drugs, includ-
ing metoprolol, timolol, propafenone and others, 
are metabolically inactivated by CYP2D6, leading 
to increased exposure and risk of adverse events for 
PMs and IMs [39–41]. CYP2D6 is involved in the 
metabolism of the parent drug into active metabo-
lites (i.e., risperidone to 9-hydroxyrisperidone [42] 
or thioridazine to mesoridazine [43]); therefore, 
PMs might experience decreased activity of the 
active metabolite and a potential higher risk of 
drug–drug interactions [44].

The frequency of genotypes with duplica-
tion/multiplication of active CYP2D6 alleles 
in Tepehuano subjects was the closest to those 
reported in Mexican Mestizos (7%) and white 
European populations (3–5%) [41] but higher 
than those for South American and Amerindian 
populations (0–1%) [9,10,32,45].

The likely cause for the gain of active genes in 
these indigenous populations is natural selection. 
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Figure 1. CYP2D6*4 allele frequencies (%) in ancestral populations, Amerindian groups and Mestizos from Mexico.  
DF: Distrito Federal; NA: Native Amerindians. 
Data taken from [9,15,16,22,24–27].
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Environmental factors, such as diet, could have 
exerted a selective advantage on duplicated 
CYP2D6 genes, increasing the survival rates of 
these individuals. It is believed that a similar phe-
nomenon has occurred in Ethiopia and in Saudi 
Arabia [1], where the highest frequency of multiple 
CYP2D6 active genes has been described [13,45]. In 
the indigenous populations, living conditions of 
extreme poverty have prevailed for generations, 
which have resulted in the restriction of food and 
inadequate caloric intake. This led to the search 
for alternative sources of food, such as some plant 
species. Therefore, long periods of starvation could 
exert a selection pressure, favoring the survival of 
subjects with the ability to detoxify plants toxins. 
The basis of this selection would be the ability of 
CYP2D6 to detoxify alkaloids [46].

One of the most commonly duplicated and 
multiplied CYP2D6 active alleles is CYP2D6*2, 
which is the most frequent in the populations 
studied (5.26–26.5%). This isoform of the 
enzyme is likely to have more affinity towards 
certain plant products that have been tradition-
ally consumed for many years by some Mexican 
indigenous groups.

Subjects with multiple active CYP2D6 copies 
metabolize drugs more rapidly; therefore, the 
therapeutic effect of a drug at standard doses 
is not achieved. These individuals also may 
develop adverse reactions due to the formation 
of 10- to 30-fold higher amounts of metabolites 
[47]. Marked decreased drug concentrations have 
been observed in UMs with drugs such as trama-
dol [48], venlafaxine [49], morphine [50] and mir-
tazapine [51]. Additionally, the role of CYP2D6 
in personality has been demonstrated in Latino 
Americans from Cuba, as analyzed with the Kar-
olinska Scale of Personality [52,53], and a higher 
frequency of suicide attempts among UMs has 
been reported [54,55].

Conclusion
This study demonstrates a low frequency of inac-
tive CYP2D6 alleles in indigenous populations 
and a higher frequency of duplication/multipli-
cation of active CYP2D6 alleles than in Mexican 
Mestizos. The information obtained may be use-
ful for generating drug therapy strategies aimed 
at the indigenous populations of Mexico.

Future perspective
CYP2D6 genotyping can partially predict 
enzyme activity; hence, the results obtained in 
the present work will complement further stud-
ies evaluating the relationship between geno-
type and phenotype (pharmacologic response) 
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in indigenous populations. The observed 
CYP450-mediated metabolism response also 
considers the effects of different ethnic and cul-
tural factors. The knowledge of the pharmaco-
genetic characteristics in Mexican Amerindian 
groups will be relevant for the implementation 
of therapeutic strategies focused on indigenous 
populations.
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executive summary

Background

 � CYP2D6 is an important member of the CYP450 family; it is involved in the metabolism of many widely used clinical drugs.

 � Genetic polymorphisms of the CYP2D6 enzyme can produce deep changes in enzyme activity, thus determining the individual response 
to a certain drug through poor, intermediate, extensive or ultrarapid metabolizer phenotypes.

 � In this work, we determined the allelic variants of CYP2D6 and the predicted phenotype in eight indigenous groups from northwest 
Mexico and compared them with Mexican Mestizos.

Results

 � The CYP2D6*1 wild-type was predominant in the groups studied. The more frequent allele variants were CYP2D6*2 (range: 5–28%), 
CYP2D6*4 (range: 1.0–21.0%) and multiplication of functional alleles (range: 4.3–10.7%).

 � The CYP2D6*3, *17, *35 and *29 variants were not detected in the Amerindian groups studied.

 � Homozygosity for two inactive alleles, and thus a poor metabolizer phenotype, was detected in only one Tarahumara subject, and the 
*1xN/*1, *1xN/*2 and *2xN/*2 genotypes (phenotypically ultrarapid metabolizers) were very frequent in the groups studied 
(5.5–20.5%).

Conclusion

 � The present data show a low frequency of inactive alleles of CYP2D6 and a higher frequency of duplication/multiplication of CYP2D6 
active alleles in indigenous populations compared with Mexican Mestizos.

 � Our results support the idea that ethnic variability must be considered in pharmacological treatment, especially for drugs metabolized 
by CYP2D6 and/or with a narrow safety range.
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