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Abstract: Water use efficiency is essential in semiarid regions of Spain, and it can be achieved
through a precise knowledge of the real crop water requirements (CWR). The Food and Agriculture
Organization of the United Nations (FAO) offers standardized crop coefficients to establish the CWR.
However, these coefficients can change due to different conditions, such as climatic variations and
cultivation practices. In this work, the evapotranspiration (ETClys ) and crop coefficients (KClys ) of
bell pepper were obtained with a compact removable weighing lysimeter between February and
August for two crop seasons (2019 and 2020). ETClys was determined from the water balance, and the
KClys values were determined as the ratio of the crop evapotranspiration, measured on the removable
weighing lysimeter, and the reference evapotranspiration. The KClys average values for the bell
pepper in the initial, middle, and final stages were 0.57, 1.06, and 0.80, respectively. KC regression
models were obtained as a function of the fraction thermal units, achieving a maximum correlation
of 0.67 (R2). In general, the KC values obtained in this research work were lower in the initial and
in the final stages and larger in the middle stage in comparison with the FAO-56 values and other
research works values in semiarid conditions. The bell pepper yield increased by 7.72% in 2019 and
by 3.49% in 2020 compared to the yield reported by the Ministry of the Environment and Rural and
Marine Areas of the Spanish Government in 2019 and with a minimum water loss through drainage.
The results in this work can help farmers to determine the crop water requirements and to improve
the system efficiency in semiarid locations with similar conditions to those in the study.

Keywords: mini-lysimeter; thermal units; horticultural crop evapotranspiration; semiarid conditions

1. Introduction

The irrigation areas in southeast Spain are characterized by limited water resources
due to a semiarid climate. The Mediterranean basin has very hot summers that increase the
crop water demand via an increase in the crop evapotranspiration rate [1–3]. Insufficient
water for crop management causes poor water distribution and a reduction in agricultural
yield, which is associated with less growth and crop development [4,5]; therefore, strategies
must be adopted in order to optimize water resources and to obtain profitable crops [1].

In the Mediterranean area, Andalusia, Murcia, and Valencia are the three main regions
of horticultural production, mostly involving spring–summer crops. The bell pepper
production in this area mainly occurs in the Murcia region, where greenhouses reach up
to 82% of the total cultivated hectares while open-field cultivation represents only 18%.
The average greenhouse yield is 30% higher than the yield of open fields [6]. According to
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Nikolau et al. [7], the use of greenhouses allows a more efficient water use in comparison
to open-field cultivation because the plastic covering reduces soil evaporation, with a 38%
reduction in the water requirements of bell pepper.

In agricultural areas with limited water resources, such as the Mediterranean area, it
is common to use a drip irrigation system due to its punctual application [5]; however, if
the irrigation system is not properly managed, there will be water losses, usually due to
run-off or water leaks in the conduction system itself.

In order to achieve the optimal irrigation application and to maximize its efficiency,
it is necessary to know the precise amount of water required by the crop for its specific
development conditions [4,8]. These water requirements can be estimated accurately
through a water balance, which quantifies the input and output flows of the soil profile in
the crop root zone [8–10]; in addition, a water balance helps to reduce water losses and to
diagnose the irrigation method itself [11].

There are different and indirect methodologies for estimation of the crop water re-
quirements based on the crop evapotranspiration (ETC), such as the standard approach
proposed by the Food and Agriculture Organization of the United Nations (FAO), which
uses the concept of the reference evapotranspiration (ETO) and crop coefficient (KC). This
methodology has two steps. The first uses climatic variables such as the relative air hu-
midity, the sunshine hours, the solar radiation, the wind speed, and the air temperature in
order to obtain the ETO that refers to a uniformly growing crop, similar to a field of green
grass, well irrigated and with a uniform height. This is called the FAO Penman–Monteith
method and represents the effect of climate on water requirements [12].

The second step refers to the Kc that represents the effect of the crop growth with
time as a coefficient. For this coefficient, the FAO proposes two approaches in order to
integrate the physical and physiological crop properties. The first approach is called single
coefficient and integrates the ETO and the ETC (Kc = ETC/ETO), while the second approach
separates evaporation and transpiration. There are different ways to measure the KC. One
method considers the crop stress through the fraction thermal units or growth degree days
from the average air temperature. Fraction thermal units measure the accumulated heat
above the base temperature, which is different between crop varieties; plant growth is
zero when the temperature is below the base temperature [13,14]. Similarly, KC can be
determined in the days after planting (DAP) [13] from vegetation indexes and satellite
image processing [15,16], or as a percentage of green coverage via the processing of digital
photos [2].

In this context, a weighing lysimeter provides a direct method to measure the ETC
through the mass balance of an isolated soil volume [17]. The use of weighing lysimetry
in the ETC estimation has been widely studied [3,18–21], and it has also been used to
study the flows involved in the water balance and solutes in soil profiles under different
conditions [22], such as dew, fog and frost [23], precipitation [24–28], and percolation [29].
One of the main features of such a device is the high accuracy, allowing its use to establish
and calibrate different mathematical models [9,17].

Weighing lysimeters usually have large dimensions and require a large set-up area and
specialized maintenance, making them expensive and of limited use for research purposes.
The results from lysimetry research can be used by farmers when the conditions are similar
to those in the experiment [30]. Ruiz-Peñalver et al. [30] and Nicolás-Cuevas et al. [31]
developed compact and transportable weighing lysimeters that can be used in commercial
plots to evaluate the irrigation application efficiencies or for estimating the crop water
requirements; once the harvest is finished, the lysimeters are easy to move. Other small
commercial lysimeters have been produced by the METER Group® (USA) [32] and UGT
Company (Germany) [33].

The objective of this work was to compute the evapotranspiration of a bell pepper
crop by using a removable weighing lysimeter during two crop seasons and to determine
the crop coefficients adapted to the specific climatic and technical conditions. The results
were compared to those obtained with the FAO-56 methodology, with the KC inferred from
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the lysimeter being used to establish the relationship as a function of the thermal units.
The crop yield was also evaluated.

2. Materials and Methods
2.1. Study Area

The experiment was conducted during 2019 and 2020 in a commercial bell pepper
plot (Capsicum annuum L. var. Maestral), located in San Javier in the Murcia region in the
southeast of Spain (Figure 1a), with the geographic coordinates 37◦51′11.80” N latitude
and 0◦49′50.00” W longitude and an altitude of 15 m.a.s.l. (meters above the soil level).
The experimental plot was an open field, and the area around the plot was dominated
by greenhouses. The plot is highlighted in red in Figure 1b. The predominant climate
in the study area has been identified as Mediterranean subdesert, with maximum and
minimum temperatures of 39.6 and 12.9 ◦C, respectively, and an average annual rainfall of
313 mm [2].
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Figure 1. Study area: (a) Region of Murcia and (b) location of the experimental plot.

2.2. Description of the Removable Weighing Lysimeter

The removable weighing lysimeter consists of two recipients. One of them is the
cultivation recipient (CR) that contains the soil profile and the crop. It has the dimensions
of 0.56× 0.96× 0.30 m with a small slope at the bottom along all four sides of the container,
so that the drained water is guided by gravity to a central hole at the bottom to avoid
water accumulation. The second is the drainage recipient (DR) that stores the water that
vertically drains from the CR, similar to the one used by Nicolás Cuevas et al. [31].

The lysimeter was installed in the center of the plot, avoiding the edges, because it
was necessary that it be surrounded by the same crop to obtain reliable measurements [34].
In a previously excavated hole, in which the dimensions of the lysimeter were considered,
the soil extracted during the excavation was then placed in the CR, while trying to keep
the soil unaltered. A hydrodynamic characterization of the clay soil was performed based
on the methodology proposed by the U.S. Department of Agriculture (USDA) [35] with a
bulk density of 1.38 g/cm3. The irrigation system used was drip irrigation, with emitters
placed every 25 cm and an application rate of 2.2 L/h (Figure 2).
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2.3. Crop Management

The bell pepper crop (Capsicum annuum L.), previously sowed under greenhouse
conditions, was transplanted at 10 cm height. The planting frame measured 1 m between
lines and 0.33 m between plants, leaving a total of three plants and three drippers within
the CR (Figure 2). The vegetative cycle until the harvest was 195 days. The irrigation
scheduling was performed following the ETC computation with the lysimeter and with
91% application efficiency.

The fertilization dose was applied with the irrigation water according to the recom-
mendations of the Ministry of Agriculture, Fisheries and Food of Spain [36]; meanwhile,
weeds and pests were managed according to the common practices in the agricultural area.

2.4. Determination of Evapotranspiration and Crop Coefficients

The computation of evapotranspiration started with the crop transplanting. Then,
through the application of irrigation, the soil reached field capacity, with the initial value
of CR representing the soil mass plus water mass plus the mass of three plants. During the
crop development, if the soil did not receive water, the CR mass decreased because of the
ETC. When irrigation was applied or rainfall occurred, the RC’s mass increased rapidly; if
the soil field capacity was exceeded, the soil began to drain or discharge the excess water
from the bottom of the RC, which was reflected by the increased mass of the DR. Once
irrigation or rainfall was stopped, the soil lost water because of the ETC.

From the operation behavior of the lysimeter described above, the daily crop evapo-
transpiration was calculated by applying the water balance equation [37] and the conditions
established in the work of Peters et al. [28], as in Equations (1) and (2):

ETCLYS = I− ∆DR± ∆CR (1)

Under conditions of no rain or irrigation water, Equation (1) would be as follows:

ETCLYS = −∆CR− ∆DR (2)

where I is the irrigation depth (mm), ∆CR is the mass variation in the cultivation recipient
(mm), and ∆DR in the mass increase in the drainage recipient (mm), considering that 1 kg
of lysimeter variation represents 1.85 mm of water.

From the data obtained with the lysimeter, the daily values of the crop coefficient
(KClys ) were calculated using Equation (3) [12]:

KClys =
ETCLYS

ETO
(3)

where ETO is the reference evapotranspiration estimated by the FAO Penman–Monteith
method [12], considering the climate records generated in an automatic weather station
built with a datalogger (CR10X model, Campbell Scientific, Logan, UT, USA), a pyranome-
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ter (CM14 model, KIPP&ZONEN Delft), temperature and relative humidity sensors placed
at 1.5 m above the ground level (MP100 probe, Campbell Scientific, Logan, UT, USA),
anemometer and anemovelta at a 2 m height (A100R and W200P models, respectively,
of Vector Instruments Ltd., Rhyl, North Wales, UK), and a rain gauge (ARG100 model,
Campbell Scientific, Logan, UT, USA). The automatic weather station was installed next
to the weighing lysimeter. The phenological stages were defined according to the Allen
et al. [12]’s recommendations.

The ETC value determined with the FAO-56 method [12] was compared with the ETC
obtained with the lysimeter, and the model used was as follows:

ETCFAO = ETO × KCFAO (4)

where KCFAO refers the values proposed by the FAO-56 for bell pepper for the different
stages of crop development.

From the average air temperature obtained with the weather station, the crop thermal
units (TU) were determined for the whole cycle [14] by considering a 10 ◦C basal temper-
ature (Tb), proposed by Vidal [38], which is the minimum temperature at which the bell
pepper can develop.

If Ta > Tb :
TUi = (Ta − Tb)i

If Ta ≤ Tb :
TUi = TUi−1

(5)

where TUi is the thermal unit for day i (◦C), TUi−1 is the thermal unit for day i− 1 (◦C),
and Ta is the average air temperature in (◦C) for day i.

The TU values were converted to accumulated fraction thermal units (FTU):

FTUi =
TUi

ΣTUi
(6)

where ΣTUi is the total accumulative TU for optimal growth of the bell pepper, proposed
by Vidal to be 2200 ± 220 ◦C [38]. In this experiment, the total cumulative thermal units
for the 2019 and 2020 seasons were 1860 and 1904 ◦C, respectively. A relationship was
obtained for the FTU results and the crop coefficient from the lysimeter using the least
squares algorithm [39].

Different metrics were used to compare the results obtained from the different method-
ologies, such as the mean estimation error (MEE), the root mean square error (RMSE), the
systematic mean square error (MSEs), the coefficient of determination (R2), and the index
of agreement (IA).

MEE =
1
n

n

∑
i=1

Yi − Ŷi (7)

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (8)

MSEs =
1
n

n

∑
i=1

(
Ŷi −Yi

)2 (9)

IA = 1− ∑n
i=1
(
y− Ŷi

)2

∑n
i=1
(∣∣Ŷ− y

∣∣+ |y− y|
)2 (10)

where n is the data number, Yi is the value measured of i, Ŷi is the estimated value in the
regression of day i or value to be compared, and y is the mean of the measured values of
day i [40,41].
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2.5. Water Productivity

According to the methodology proposed by Playán and Mateos [42], the water pro-
ductivity was determined by the relationship between the production obtained and the
volume consumed, expressed in kg/m3, which related to the crop yield per cultivated area
in t/ha and the economic benefits per cultivated area, EUR/ha.

3. Results and Discussion
3.1. Meteorological Conditions

The 2019 growing season was from 15 February to 28 August, while the 2020 season
was from 10 February to 22 August, both from the date of transplant. The 2019 and 2020
average air temperature, average relative humidity, average wind speed, and ETO for the
different periods are shown in Figure 3. The behavior of the climatic variables was very
similar for the two seasons. Comparing the two years, March, the end of April, and the
first days of June were warmer in 2020, while late June and early July were warmer in 2019.
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The relative humidity and wind speed were lower in 2019 than in 2020 for most of the
growing season. The relative humidity was especially lower from 14 March to 18 April and
from 27 July to 10 August in 2020. The average relative humidity values recorded for the
two seasons were greater than 60%, with minimum and maximum averages of 47.31% and
76.61%, respectively. The average wind speed was 1.67 m/s in 2019 and 1.65 m/s in 2020.
The ETO increased in a similar manner to the ambient temperature, with the average ETO
being 4.6 mm/day in 2019 and 4.6 mm/day in 2020.

3.2. Crop Evapotranspiration

Figure 4 shows the daily values of the ETC of the crop, the inputs due to rain and/or
irrigation, and the water losses by drainage. Initially, irrigation was applied every three
days on average; however, according to the crop growth and an increase in ETC as a result
of high summer temperatures, the schedule changed to every two days, then decreased
again to one day between irrigations.
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(
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)
and irrigation, rainfall, and drainage: (a) 2019 and (b) 2020.

The irrigation intervals showed a similar trend in both seasons; the widest interval
between irrigations for the 2019 season was five days and extended only until February,
while for the 2020 season, the widest interval was three days on average and extended
until 20 April. In April, the ETC increased, causing the interval to decrease to two days. In
the days at the end of May, when summer started, irrigation took place daily. In this period,
the daily evapotranspiration of the crop was higher than 5 mm. This interval started earlier
in the 2020 season. The total application of irrigation was 960.3 mm in 2019 and 936.1 mm
in 2020. In 2020, there were more rainfall events and therefore less irrigation was applied,
with 40.7 mm more rain and double the number of events, meaning 2.52% less irrigation
applied.

Table 1 shows the average values for irrigation, rainfall, drainage, and evapotranspira-
tion for both years.

Table 1. Seasonal water balance in millimeters.

Season Irrigation Rainfall Drainage ETCLYS

2019 960.3 35.4 12.31 874.4
2020 936.1 76.1 12.03 854.6

Comparing the gross depth of irrigation obtained with the lysimeter to that obtained
with the FAO-56 methodology, a decrease of 1.33% was found in 2019 because the water
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depth was 947.6 mm with FAO. In 2020, the water depth was 928.8 mm, representing
a decrease of 0.78% with respect to the lysimeter measurements. These decreases were
small, and the difference in depth can mean just one or two irrigations. The drainages
reported by the lysimeter achieved an average of 12 mm, with 12 and 14 events for the
2019 and 2020 seasons, respectively. In the first season, the drainages did not exceed 4 mm
and were caused by the irrigations that came to exceed a 10 mm depth; for instance, the
drainage caused by the rains on 19–21 April with a 28.4 mm depth. In the second season,
one of the drainages was caused by rain on 21–24 March of 33 mm in depth and the others
were caused by an irrigation depth larger than 12 mm. The major rainfall events were
in the months of March and April; for the first year, there were five days of rain with an
accumulated depth of 35.4 mm, while in the second year, there were double the number of
days and an accumulated depth of 76.1 mm.

The ETC increased when the temperature increased and the interval between irriga-
tions decreased, indicating the relationship that ETC has with both variables. The maximum
ETC value was reached close to 16 July for the both seasons. When the irrigation applica-
tion was on a daily scale, the ETC had high values above 5 mm. The behavior of the ETC
during rainy days was small, and it was larger the day after irrigation or rain because the
evaporation of the wet soil was more significant; in this same context, in the days when
no irrigation was performed, due to longer intervals, the ETC was maintained or declined,
because there is less evaporation from a soil with a dry surface [12]. The total ETC for the
2019 and 2020 seasons were 874.4 mm and 854.6 mm, respectively.

The lysimeter-measured ETCLYS values for both seasons were compared to the ETO
calculated using the Penman–Monteith method and the ETC obtained using the method
established by the standard methodology of FAO-56 (ETCFAO ) [12], presented in Figure 5.
The resulting average ETCLYS values for the initial, middle, and final stages were 1.6, 5.8,
and 5.4 mm/day, respectively.

The linear correlation between ETCLYS and ETO showed a good agreement (Figure 5b).
The determination coefficient was 0.90 and the RMSE was 1.04 mm/day for both seasons,
indicating the dependence that exists between the variables. In the comparison of ETCLYS
and ETCFAO , the linear regression slope was close to unity and the RMSE was 0.63 mm/day.
The values of ETCFAO in the whole crop cycle overestimated the ETCLYS by 37.44%, with
an average value of 0.4 mm/day; this may be due to the fact that the KC values used in
the FAO-56 methodology were standard values calibrated under different conditions than
those of this experiment.

The MEE was close to zero (0.03 mm/day in 2019 and 0.01 mm/day in 2020), indicating
a low bias between ETCLYS and ETCFAO . Similarly, the other metrics showed the same
behavior. The IA values were close to one (0.98 in 2019 and 0.98 in 2020), indicating a good
agreement with both ETC models. However, the MSES values were 4.05% in 2019 and
3.91% in 2020, indicating high bias, meaning one of the methods should be improved. The
MSES obtained by Martínez-Cob [14] are very similar to the results of this research, with
both MSES being greater than two.

3.3. Crop Coefficient

The crop coefficient values estimated from Equation (3) (KClys ) and the values estab-
lished in the FAO-56 paper for this crop (KCFAO ) are show in Figure 6. The KClys ini of the
lysimeter was 0.57, KClys mid was 1.06, and KClys end was 0.80. These data were adjusted to a

third-degree polynomial curve, with an R2 of 0.73. In this model, a maximum KC of 1.11
and a minimum of 0.48 were observed.
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When comparing KClys to KCFAO , an R2 of 0.79 and an RMSE of 0.09 were obtained.
The values of KClys oscillated around the values recommended by Allen et al. [12].

The jump in KClys between DAP 50 and 75 (Figure 6) may be due to the low reference
evapotranspiration values reported on those days in both seasons, being more significant
for the 2020 season. It should be remembered that in Equation (3), KClys is a function of
ETO, so the lower the ETO, the higher the KClys .

A relationship between KClys and the fraction thermal units (FTU) was obtained;
Figure 7 shows the two resulting graphs of the polynomial fit. As shown in Figure 7a, the
maximum KCFTU value was 1.15 for the FTU range of 0.43–0.62; the maximum for Figure 7b
was 1.15 in the range of 0.36–0.49. Although, the second setting (Figure 7b) showed a
slightly better R2, it reached a maximum curve during the early FTU period and a slower
decrease; the curve at the end of the cycle rose and moved away from the observed points.
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The average total of FTU was 1881.76, a value in the range proposed by Vidal [38].
There was a lower bias between KCFAO and KCFTU , followed by KCFAO against KClys with
0.09 and KCFTU against KClys with 0.48. These values are shown in Table 2.

Table 2 shows the KC values of two works that estimated the KC values for the bell
pepper. The work of Shukla et al. [43] was performed in Florida, USA during the 2003–
2008 fall–winter seasons, with a temperature range of 17–29 ◦C, an annual rainfall of
1260 mm/year, a total ETC of 267 mm, and with a high water table. The crop bed was
covered with plastic mulch that covered 33% of the lysimeter area.

In the area of Peninsular Malaysia, characterized by a warm and humid climate,
the second study was performed by Muniandy et al. [44] during August 2013 and May
2014, with an average temperature range of 24–30 ◦C, a monthly rainfall of 125–270 mm,
and relative humidity (RH) between 63% and 88%. Both investigations used the same
methodology to determine the ETC and KC as used in this study.

The temperature range and the relative humidity of both works were in the same
range as our work, but with higher rainfalls than those registered in a whole year in
our study zone and performed in a different sowing season. Shukla et al. [43] reported
high bimonthly values of ETC for their seasons, because irrigation and rainfall kept the
groundwater table high and increased the soil moisture with mulching. Therefore, the
KC values of this research were the highest (Table 1); they were 50.88%, 14.15%, and 60%
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higher in each stage, respectively, compared to values reported with the lysimeter in this
research.

Table 2. KC values obtained in this study and other works.

KCValues
Crop Stage

Location Irrigation
Method

Climate Crop Cycle
(Day)Initial Middle End Conditions

KClys 0.57 1.06 0.80
Murcia, Spain Drip

Temp. 12–28 ◦C
RH 47%–77%

Rain <100 mm/season
ETc ≈ 860 mm/season

195KCFTU * 0.69 1.05 0.78
KCFTU ** 0.65 1.06 0.93

Allen et al. [12] 0.6 1.05 0.9 Europe and
Mediterranean __ RH ≈ 45% 125

Shukla et al. [43] 0.86 1.21 1.28 Florida, USA Sub-surface
Temp. 17–29 ◦C

Rain 1260 mm/year
ETc 267 mm

100

Muniandy et al. [44] 0.67 0.95 0.76 Kluang,
Malaysia Sprinkler

Temp. 24–30 ◦C
Rain 125–270 mm/month

RH 63%–88%
125

* Second-order polynomial fit values; ** third-order polynomial fit values. RH, relative humidity.

In contrast, the values of Muniandy et al. [44] in the middle and final stages were the
lowest, as shown in Table 2. The climatic conditions were very similar to those of the work
mentioned above, but without the influence of the water table. These values presented a
reduction of 10.38% and 5% in KCmid and KCend , respectively, from those reported in this
work with the lysimeter. The values proposed by Allen et al. [12] presented less variability
with respect to those obtained with the lysimeter in this research, with an increase in the
initial and final stages of 5.26% and 12.5%, respectively, and a decrease in the middle stage
of 0.94%. The FAO values pertain to climates with a RH close to 45% and wind speeds
close to 2 m/s; our conditions satisfy these figures.

3.4. Yield

Table 3 shows a summary of the final production achieved in each season. The
bell pepper yield for both seasons was superior to that reported by the Ministry of the
Environment and Rural and Marine Areas of the Spanish Government in 2019 of 75.66 t/ha
for the Region of Murcia [6]. The removable weighing lysimeter allowed greater precision
in the control of the crop water balance, which increased the crop yield and produced a
significant water saving in comparison to the common practices of the Region of Murcia.
The water production and economic yields were similar for both seasons.

Table 3. Production data of both seasons.

Year Bell Pepper Yield
(t/ha)

Water Productivity
(Kg/m3)

Economic Yield
(EUR/ha)

2019 81.5 8.49 64,457.55
2020 78.3 8.36 64,808.91

In 2019, a better yield was obtained, as the excess humidity in the soil caused by the
rains in 2020 generated an abortion of flowers, reducing the productivity of the bell pepper
in that year [45].

4. Conclusions

The ETC and KC values for the bell pepper crop were calculated using a compact
weighing lysimeter and an automatic weather station for two seasons in the semiarid
southeast of Murcia, Spain. The ETC was affected by irrigation and rainfall events, which
increased the soil evaporation, most notably when there was a shorter interval between
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irrigations. Second- and third-order models were developed for KC as a function of fraction
thermal units, based on the data of KC inferred from the lysimeter with determination
coefficients greater than 0.60. The average values of KC for the bell pepper for the initial,
middle, and final stages were 0.57, 1.06, and 0.80, respectively. The KC values were similar
to those proposed by Allen et al. [12] because the climatic conditions were similar in both
studies, which were lower compared to the values of Shukla et al. [43], where the climatic
conditions were similar but the rain and the contribution of the water table caused greater
evaporation.

An increase in the bell pepper yield of 7.72% in 2019 and of 3.49% in 2020 was achieved
compared to the yield established by the Ministry of the Environment and Rural and Marine
Areas of the Spanish Government [6]. The KClys values and the FTU models for the bell
pepper obtained in this study will help farmers to determine the water requirement and to
improve the crop water efficiency in semiarid locations with conditions similar to those of
this study.
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