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Avenida Francisco, J. Mújica S/N, 58060, Morelia, Michoacán, México.
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Abstract

In this paper, using the Bestest Little Higgs Model (BLHM) we calculate at the one-loop level

the contributions to the Anomalous Magnetic Dipole Moment (AMDM) and Anomalous Weak

Magnetic Dipole Moment (AWMDM) of the tau-lepton. The implications from this model are

studied, emphasizing the contributions of the new physics induced by the new scalar and vector

bosons of the BLHM: Si = H0, A0, φ
0, η0, σ,H±, φ±, η±, and Vi = Z ′,W ′± because these quantify

the new physics. With these new contributions, we estimated bounds on the real and imaginary

parts of the AMDM and AWMDM of the tau-lepton. Our study complements other one-loop-level

research performed on models beyond the Standard Model.
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I. INTRODUCTION

The study of the physics of the tau-lepton by the ATLAS and CMS experiments [1–

5] at the Large Hadron Collider (LHC) has developed significantly and now represents a

very active physics program. In addition, the following present and future colliders: hadron-

hadron (pp), lepton-hadron (e−p), and lepton-lepton (e+e−, µ+µ−) for the post LHC era will

open up new horizons in the field of fundamental physics. All of these colliders contemplate

in their physics programs the study of the physics of the tau-lepton.

In the Standard Model (SM) of elementary particle physics, as well as in many of its

extensions, the search for Anomalous Magnetic Dipole Moments (AMDM), Electric Dipole

Moments (EDM), and Anomalous Weak Magnetic Dipole Moments (AWMDM) of funda-

mental fermions, and in particular from the tau-lepton is an essential aspect of theoretical,

phenomenological and experimental investigations hunting for physics beyond the Standard

Model (BSM) of particle physics. For a review of the bounds on the electromagnetic and

weak dipole moments, see Refs. [6–20].

In the lepton sector, the tau-lepton is a key particle in the SM and several extensions

of the SM as it is considered a laboratory for many experimental or simulation aspects of

the search for new physics. This particle is characterized by its high mass [21] compared

to the mass of the electron or muon, so one would expect its electromagnetic and weak

dipole moments to be much more sensitive to the effects of new physics than the electron

or muon itself [19]. Unfortunately, the very short τ lifetime [21] makes it very difficult

to measure its dipole moments (AMDM, EDM, AWMDM) with a precision good enough

to perform a significative test. The spin-precession technique adopted in the electron and

muon g − 2 is no-longer feasible [19]. Instead, one measures the production of tau pairs at

different high-energy processes. For instance, the most stringent current bound on the τ

AMDM (see Table I) was derived using the data collected by the DELPHI Collaboration

from measurements in the cross-section of the process e+e− → e+e−τ+τ− at
√
s between

183 and 208 GeV at LEP2 [22]. As for the τ EDM, dτ , the BELLE Collaboration searched

for CP-violation effects in the e+e− → γ∗ → τ+τ− process using triple momentum and spin

correlations [23]. Through this reaction, they obtained the limits shown in Table I for the

real and imaginary parts of the τ EDM. In the SM scenario, the theoretical predictions on

the τ AMDM and EDM are: aSMτ = 117721(5)×10−8 [24–26] and dSMτ < 10−34 ecm [27–29],
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respectively. These results are well below current experimental limits.

TABLE I: The best current experimental results for the electromagnetic dipole moments of

the τ -lepton.

Collaboration Best present experimental bounds on aτ and dτ C.L. Reference

DELPHI −0.052 < aτ < 0.013 95 % [22]

BELLE −2.2 < Re(dτ (10−17 e cm)) < 4.5 95 % [23]

−2.5 < Im(dτ (10−17 e cm)) < 0.08 95 % [23]

Another intrinsic property of the τ -lepton that has received attention in recent years due

to important advances in the experimental domain consists of the weak dipole moments of the

tau, which are associated with its interaction with the Z gauge boson. Both the AWMDM

and the Weak Electric Dipole Moment (WEDM) of the τ -lepton, aWτ and dWτ , have been

investigated with LEP data [30–32]. In Table II we show the current best experimental

bounds on aWτ and dWτ . These limits are obtained through τ+τ− production at LEP by

the ALEPH Collaboration, corresponding to an integrated luminosity of 155 pb−1 [30].

On the theoretical side, the reached precisions in the AWMDM and WEDM of the tau-

lepton are aW−SMτ = −(2.10 + 0.61 i) × 10−6 [33] and dW−SMτ < 8 × 10−34 ecm [34]. These

values are well below the current experimental sensitivity. This opens the possibility of

looking for deviations from the SM; therefore, studying extensions of the SM could generate

significant contributions of new physics that are closer to the experimental bounds. With

these motivations, we research on the electromagnetic and weak dipole moments of the

tau-lepton in the context of the BLHM.

Based on everything already mentioned above, in this paper, we estimate the sensitivity

bounds on the AMDM and AWMDM of the τ -lepton in the SM and BLHM scenario, and

emphasis will be placed on the contributions generated by the particles predicted by the

BLHM, as these quantify the new physics.
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TABLE II: The best current experimental results for the weak dipole moments of the τ -

lepton.

Collaboration Best present experimental bounds on aWτ and dWτ C.L. Reference

ALEPH |Re(aWτ )| < 1.14× 10−3 95 % [30]

|Im(aWτ )| < 2.65× 10−3 95 % [30]

ALEPH |Re(dWτ )| < 0.50× 10−17 e cm 95 % [30]

|Im(dWτ )| < 1.1× 10−17 e cm 95 % [30]

The purpose of the BLHM is to solve the hierarchy problem without fine-tuning. This is

achieved through the incorporation of one-loop corrections to the Higgs boson mass through

heavy top-quarks partners and heavy gauge bosons. This extension of the SM predicts the

existence of new physical scalar bosons neutral and charged H0, A0, φ
0, η0, σ,H±, φ±, η±,

new heavy gauge bosons Z ′,W ′± and new heavy quarks B, T, T5, T6, T
2/3, T 5/3. At the one-

loop level, the AMDM aτ and AWMDM aWτ of the τ -lepton are induced via the Feynman

diagrams represented in Figs. 1 and 2, where Si, Φ±i and Hi represent scalar bosons, Vi and

W±
i gauge bosons, and li leptons. In the framework of the BLHM, new model contributions

are those arising from the vertices of scalars bosons, vector bosons and vector-scalar bosons,

that is to say, vertices of the form (see Figs. 1 and 2): γW ′+W ′−; ZW ′+W ′−; γW±
i Φ±i ,

W±
i = W±,W ′±, and Φ±i = φ±, η±; ZW±

i Φ±i ; ZZH0; ZZ ′Hi, Hi = h0, H0; H0ττ ; τ liSi,

Si = H0, A0, φ
0, η0, σ,H±, φ±, η±; τ liVi, Vi = Z ′,W ′±; γlil̄i, and Zlil̄i, where li = τ, ντ .

With these vertices, we calculate the one-loop contributions to the AMDM and AWMDM

of the τ -lepton and in several scenarios with mA0 = 1000 GeV, mη0 = 100 GeV, tan β = 3,

f = [1000, 3000] GeV and F = [3000, 6000] GeV.

The paper is structured as follows. In Section II, we give a brief review of the BLHM.

In Section III, we present the predictions of the BLHM on the electromagnetic and weak

dipole moments of the tau-lepton. In Section IV, we discuss the sensitivity bounds obtained

on the AMDM and AWMDM of the τ -lepton. Finally, we present our conclusions in Section

V. In Appendix A, we present the Feynman rules employed in the study of electromagnetic

and weak dipole moments of the τ -lepton in the context of the BLHM. In Appendix B, we

provide the one-loop level SM predictions on the AMDM and AWMDM of the tau-lepton.
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II. THE BESTEST LITTLE HIGGS MODEL

Various extensions of the SM, such as Little Higgs Models (LHM) [35, 36], have been

proposed to solve the problem of the mass hierarchy. This class of models employs a complex

mechanism named collective symmetry breaking. The main idea is to represent the SM Higgs

boson as a pseudo-Nambu-Goldstone boson of an approximate global symmetry that is

spontaneously broken at a scale in the TeV range. In these models, the collective symmetry

breaking mechanisms is implemented in the norm sector, fermion sector, and the Higgs

sector, which predicts new particles within the mass range of a few TeV. These new particles

play the role of partners of the top-quark, of the gauge bosons, and the Higgs boson, the

effect of which is to generate radiative corrections for the mass of the Higgs boson and thus

cancel the divergent corrections induced by SM particles. However, LHM [35–37] are already

strongly constrained by electroweak precision data. These constraints typically require the

new gauge bosons of LHM to be quite heavy [38, 39]. In most LHM, the top partners are

heavier than the new gauge bosons, which can lead to significant fine-tuning in the Higgs

potential [40].

An exciting and relatively recent model is the BLHM [41] overcomes these difficulties

by including separate symmetry breaking scales at which the heavy gauge boson and top

partners obtain their masses. This model generates heavy gauge boson partner masses

above the excluded mass range and has light top partners below the upper bound from

fine-tuning. The BLHM is based on two independent non-linear sigma models. With the

first field Σ, the global symmetry SO(6)A×SO(6)B is broken to the diagonal group SO(6)V

at the energy scale f , while with the second field ∆, the global symmetry SU(2)C×SU(2)D

to the diagonal subgroup SU(2) to the scale F > f . In the first stage are generated 15

pseudo-Nambu-Goldstone bosons that are parameterized as

Σ = eiΠ/fe2iΠh/feiΠ/f , (1)

where Π and Πh are complex and antisymmetric matrices given in Ref. [41]. Regarding the

second stage of spontaneous symmetry-breaking, the pseudo-Nambu-Goldstone bosons of

the field ∆ are parameterized as follows

∆ = Fe2iΠd/F , Πd = χa
τa

2
(a = 1, 2, 3), (2)
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χa represents the Nambu-Goldstone fields and the τa correspond to the Pauli matrices [41],

which are the generators of the SU(2) group.

A. The scalar sector

The BLHM Higgs fields, h1 and h2, form the Higgs potential that undergoes spontaneous

symmetry breaking [41–43]:

VHiggs =
1

2
m2

1h
T
1 h1 +

1

2
m2

2h
T
2 h2 −Bµh

T
1 h2 +

λ0

2
(hT1 h2)2. (3)

The potential reaches a minimum when m1,m2 > 0, while to break the electroweak

symmetry requires Bµ > m1m2. The symmetry-breaking mechanism is implemented in

the BLHM when the Higgs doublets acquire their vacuum expectation values (VEVs),

〈h1〉T = (v1, 0, 0, 0) and 〈h2〉T = (v2, 0, 0, 0). By demanding that these VEVs minimize

the Higgs potential of Eq. (3), the following relations are obtained

v2
1 =

1

λ0

m2

m1

(Bµ −m1m2), (4)

v2
2 =

1

λ0

m1

m2

(Bµ −m1m2). (5)

These parameters can be expressed as follows

v2 ≡ v2
1 + v2

2 =
1

λ0

(
m2

1 +m2
2

m1m2

)
(Bµ −m1m2) ' (246 GeV)2 , (6)

tan β =
v1

v2

=
m2

m1

. (7)

From the diagonalization of the mass matrix for the scalar sector, three non-physical fields

G0 and G±, two physical scalar fields H± and three neutral physical scalar fields h0, H0 and

A0 are generated [42, 44]. The lightest state, h0, is identified as the scalar boson of the SM.

The masses of these fields are given as

mG0 = mG± = 0, (8)

m2
A0

= m2
H± = m2

1 +m2
2, (9)
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m2
H0

=
Bµ

sin 2β
+

√√√√ B2
µ

sin2 2β
− 2λ0Bµv2sin 2β + λ2

0v
4sin2 2β. (10)

The four parameters present in the Higgs potential m1,m2, Bµ and λ0 can be replaced by

another more phenomenologically accessible set. That is, the masses of the states h0 and

A0, the angle β and the VEV v [42]:

Bµ =
1

2
(λ0v

2 +m2
A0

) sin 2β, (11)

λ0 =
m2
h0

v2

( m2
h0
−m2

A0

m2
h0
−m2

A0
sin2 2β

)
, (12)

tanα =
Bµcot 2β +

√
(B2

µ/sin
2 2β)− 2λ0Bµv2sin 2β + λ2

0v
4sin2 2β

Bµ − λ0v2sin 2β
, (13)

m2
H0

=
Bµ

sin 2β
+

√√√√ B2
µ

sin2 2β
− 2λ0Bµv2sin 2β + λ2

0v
4sin2 2β, (14)

m2
σ = (λ56 + λ65)f 2 = 2λ0f

2Kσ. (15)

The variables λ56 and λ65 in Eq. (15) represent the coefficients of the quartic potential defined

in [41], both variables take values different from zero to achieve the collective breaking of

the symmetry and generate a quartic coupling of the Higgs boson [41, 42]. The BLHM also

contains scalar triplet fields that get a contribution to their mass from the explicit symmetry

breaking terms in the model, as defined in Ref. [41], that depends on the parameter m4.

m2
φ0 =

16

3
F 2 3g2

Ag
2
B

32π2
log

(
Λ2

m2
W ′±

)
+m2

4

f 4 + F 4

F 2(f 2 + F 2)
, (16)

m2
φ± =

16

3
F 2 3g2

Ag
2
B

32π2
log

(
Λ2

m2
W ′±

)
+m2

4

f 4 + f 2F 2 + F 4

F 2(f 2 + F 2)
, (17)

m2
η± = m2

4 +
3f 2g2

Y

64π2

Λ2

F 2
, (18)

m2
η0 = m2

4. (19)

B. The gauge sector

In the BLHM, the new gauge bosons develop masses proportional to
√
f 2 + F 2 ∼ F .

This makes the masses of the gauge bosons large relative to other particles that have masses

proportional to f . The kinetic terms of the gauge fields in the BLHM are given as follows:
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L =
f 2

8
Tr(DµΣ†DµΣ) +

F 2

4
Tr(Dµ∆†Dµ∆), (20)

where

DµΣ = ∂µΣ + igAA
a
1µT

a
LΣ− igBΣAa2µT

a
L + igYB

3
µ(T 3

RΣ− ΣT 3
R), (21)

Dµ∆ = ∂µ∆ + igAA
a
1µ

τa

2
∆− igB∆Aa2µ

τa

2
. (22)

T aL are the generators of the group SO(6)A corresponding to the subgroup SU(2)LA, while

T 3
R represents the third component of the SO(6)B generators corresponding to the SU(2)LB

subgroup, these matrices are provided in [41]. gA and Aa1µ denote the gauge coupling and

field associated with the gauge bosons of SU(2)LA. gB and Aa2µ represent the gauge coupling

and the field associated with SU(2)LB, while gY and B3
µ denote the hypercharge and the

field. When Σ and ∆ get their VEVs, the gauge fields Aa1µ and Aa2µ are mixed to form a

massless triplet Aa0µ and a massive triplet AaHµ,

Aa0µ = cos θgA
a
1µ + sin θgA

a
2µ, AaHµ = sin θgA

a
1µ − cos θgA

a
2µ, (23)

with the mixing angles

sg ≡ sin θg =
gA√

g2
A + g2

B

, cg ≡ cos θg =
gB√

g2
A + g2

B

, (24)

which are related to the electroweak gauge coupling g through

1

g2
=

1

g2
A

+
1

g2
B

. (25)

After breaking the electroweak symmetry, when the Higgs doublets, h1 and h2 acquire

their VEVs, the masses of the gauge bosons of the BLHM are generated. In terms of the

model parameters, the masses are given by

m2
γ = 0 , (26)

m2
Z =

1

4

(
g2 + g2

Y

)
v2

(
1− v2

12f 2

(
2 +

3f 2

f 2 + F 2

(
s2
g − c2

g

)2
))

, (27)

m2
W± =

1

4
g2v2

(
1− v2

12f 2

(
2 +

3f 2

f 2 + F 2

(
s2
g − c2

g

)2
))

, (28)

8



m2
Z′ = m2

W ′± +
g2s2

Wv
4

16c2
W (f 2 + F 2)

(
s2
g − c2

g

)2
, (29)

m2
W ′± =

g2

4c2
gs

2
g

(
f 2 + F 2

)
−m2

W± . (30)

The weak mixing angle is defined as

sW ≡ sin θW =
gY√

g2 + g2
Y

, (31)

cW ≡ cos θW =
g√

g2 + g2
Y

. (32)

C. The Yang-Mills sector

The gauge boson self-interactions arise from the following Lagrangian terms:

L = F1µνF
µν
1 + F2µνF

µν
2 , (33)

where F µν
1,2 are given by:

F µν
1 = ∂µAαν1 − ∂νAαµ1 + gA

∑
b

∑
c

εabcAbµ1 A
cν
1 , (34)

F µν
2 = ∂µAαν2 − ∂νAαµ2 + gB

∑
b

∑
c

εabcAbµ2 A
cν
2 . (35)

In these equations, the indices a, b and c run over the three gauge fields [45]; εabc is the

anti-symmetric tensor.

D. The fermion sector

To construct the Yukawa interactions in the BLHM, the fermions must be transformed

under the group SO(6)A or SO(6)B. In this model, the fermion sector is divided into two

parts. First, the sector of massive fermions is represented by Eq. (36). This sector includes

the top and bottom quarks of the SM and a series of new heavy quarks arranged in four

multiplets, Q, and Q′ which transform under SO(6)A, while U c and U
′c
5 are transformed

under the group SO(6)B. Second, the sector of light fermions contained in Eq. (37), in this
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expression, all the interactions of the remaining fermions of the SM with the exotic particles

of the BLHM are generated.

For massive fermions, the Lagrangian that describes them is given by [41]

Lt = y1fQ
TSΣSU c + y2fQ

′TΣU c + y3fQ
TΣU ′c5 + ybfq

T
3 (−2iT 2

RΣ)U c
b + h.c., (36)

where S = diag(1, 1, 1, 1,−1,−1). The explicit representation of the multiplets involved in

Eq. (36) is provided in Refs. [41, 44]. For simplicity, the Yukawa couplings are assumed to

be real y1, y2, y3 ∈ R.

For light fermions the corresponding Lagrangian is [41, 44, 45]

Llight =
∑
i=1,2

yufq
T
i Σuci +

∑
i=1,2

ydfq
T
i (−2iT 2

RΣ)dci +
∑

i=1,2,3

yefl
T
i (−2iT 2

RΣ)eci + h.c. (37)

E. The currents sector

The Lagrangian that describes the interactions of fermions with the gauge bosons is [41,

44]

L = Q̄τ̄µDµQ+ Q̄′τ̄µDµQ
′ − U c†τµDµU

c − U ′c†τµDµU
′c − U c†

b τ
µDµU

c
b +

∑
i=1,2

q†i τ
µDµqi

+
∑

i=1,2,3

l†i τ
µDµli −

∑
i=1,2,3

ec†i τ
µDµe

c
i −

∑
i=1,2

uc†i τ
µDµu

c
i −

∑
i=1,2

dc†i τ
µDµd

c
i , (38)

where τµ and τ̄µ are defined according to [46]. On the other hand, the respective covariant

derivatives are provided in Refs. [44, 45].

III. ELECTROMAGNETIC AND WEAK DIPOLE MOMENTS OF THE TAU-

LEPTON IN THE BLHM

The electroweak properties of fermions are characterized by physical magnitudes called

form factors. These measure properties such as the electric charge, the AMDM, the EDM,

the AWMDM, the WEDM, and others. Some of these quantities are already present in

classical theory, while others arise for the first time as a quantum fluctuation of one-loop or

higher orders. In quantum field theory, the electromagnetic and weak properties of fermions

arise through their interaction with the gauge boson V , V = γ, Z. The most general Lorentz-

invariant vertex function describing the interaction of a gauge boson with two fermions can be
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written in terms of ten form factors [47, 48], which are functions of the kinematic invariants.

In the low energy limit, these correspond to couplings that multiply dimension-four or-five

operators in an effective Lagrangian and may be complex. If the gauge boson V is on-shell,

or if V couples to effectively massless fermions, the number of independent form factors is

reduced to eight. In addition, if the fermions are on-shell, the number is further reduced to

four. In this way, the V f̄f vertex function can be written in the form

ieū(p′)Γµ
V f̄f

u(p) = ieū(p′){γµ
[
F VV (q2)− F VA (q2)γ5

]
+ iσµνqν

[
F VM (q2)− iF VE (q2)γ5

]
}u(p), (39)

where e is the proton charge and q = p′− p the V gauge boson transferred four-momentum.

The terms F V
V (0) and F V

A (0) in the low energy limit are the V f̄f vector and axial-vector

form factors in the SM, while F V
M(q2) and F V

E (q2) are associated with the form factors of

the electromagnetic or weak dipole moments. The latter arise at the loop level and are

a valuable tool to study the effects of new physics indirectly, through virtual corrections

of new particles predicted by extensions of the SM. The AWMDM and WEDM are given

by aWf = −2mfF
Z
M(q2 = m2

Z) and dWf = −eFZ
E (q2 = m2

Z), whereas the electromagnetic

properties, af and df , are defined by analogue expressions but with the replacement q2 = 0.

A. The AMDM and AWMDM of the tau-lepton at the BLHM

In this subsection, we are interested in the contributions generated by the new BLHM

particles to the electromagnetic and weak dipole moments of the tau-lepton. At the one-loop

level, the τ EDM and WEDM are absent, so they do not receive contributions of the radiative

corrections. However, the τ AMDM and AWMDM are induced by scalar bosons, vector

bosons and, leptons via the Feynman diagrams depicted in Figs. 1 and 2. In these figures, Si

and Φ±i represent the new scalars A0, H0, H
±, η0, φ0, σ, η±, φ±; Vi stands for the new gauge

bosons Z ′,W ′±, and W±
i the gauge bosons W±,W ′±; and finally, li denotes the leptons

τ, ντ . To obtain the amplitude of each contribution, we use the Feynman rules provided

in Appendix A [49]. We used the unitary gauge for our calculations and implemented the

Passarino-Veltman reduction scheme to solve the loop integrals involved in the amplitudes.

Such amplitudes are also gauge independent since the V gauge boson is in on-shell, as well
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as the tau-lepton pair. It is worth mentioning that the contributions for the AMDM and

AWMDM of the τ -lepton are free of divergences.

Si(k)

τ(p1) τ(p2)

γ(q)

li li

µ

αβ

(a)

Z ′(k)

τ(p1) τ(p2)

γ(q)

li li

µ

αβ

(b)

li(k)

τ(p1) τ(p2)

γ(q)

W ′+
W ′−

µ

(c)

li(k)

τ(p1) τ(p2)

γ(q)

W+
i Φ−

i

µ

αβ

(d)

li(k)

τ(p1) τ(p2)

γ(q)

Φ+
i W−

i

µ

αβ

(e)

FIG. 1: Generic Feynman diagrams that contribute to the AMDM of the tau-lepton, li ≡
τ, ντ . a) Scalar contributions, Si ≡ σ,A0, H0, η

0, φ0. b) and c) Vector contributions, Vi ≡
Z ′,W ′±. d) and e) Scalar-vector contributions, W±

i = W±,W ′±, and Φ±i = φ±, η±.
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Si(k)

τ(p1) τ(p2)

Z(q)

li li

µ

αβ

(a)

Vi(k)

τ(p1) τ(p2)

Z(q)

li li

µ

αβ

(b)

li(k)

τ(p1) τ(p2)

Z(q)

W ′+
W ′−

µ

(c)

li(k)

τ(p1) τ(p2)

Z(q)

W+
i Φ−

i

µ

αβ

(d)

li(k)

τ(p1) τ(p2)

Z(q)

Φ+
i W−

i

µ

αβ

(e)

li(k)

τ(p1) τ(p2)

Z(q)

H0 Z

µ

αβ

(f)

li(k)

τ(p1) τ(p2)

Z(q)

Hi Z ′

µ

αβ

(g)

FIG. 2: Generic Feynman diagrams that contribute to the AWMDM of the tau-lepton,

li ≡ τ, ντ . a) Scalar contributions, Si ≡ A0, H0, H
±, η0, φ0, σ, η±, φ±. b) and c) Vector

contributions, Vi ≡ Z ′,W ′±. d), e), f) and g) Scalar-vector contributions, W±
i = W±,W ′±,

Φ±i = φ±, η±, and Hi = h0, H0.

According to Figs. 1 and 2, all possible amplitudes contributing to the F γ
M(q2) or FZ

M(q2)

form factors can be classified in terms of the six classes of triangle diagrams. Each category

can be written in the following compact notation
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Mµ
τ (Silili) = C2

τliSi

∫ d4k

(2π)4
ū(p2)

[
i
6k+ 6p2 +mli

(k + p2)2 −m2
li

] (
γµ(FVi + FAiγ

5)
)

×
[
i
6k+ 6p1 +mli

(k + p1)2 −m2
li

]
u(p1)

(
i

k2 −m2
Si

)
, (40)

Mµ
τ (Vilili) =

∫ d4k

(2π)4
ū(p2)

(
C∗τliViγ

αPL
) [
i
6k+ 6p2 +mli

(k + p2)2 −m2
li

] (
γµ(FVi + FAiγ

5)
)

×
[
i
6k+ 6p1 +mli

(k + p1)2 −m2
li

] (
CτliViγ

βPL
)
u(p1)

×
[

i

k2 −m2
Vi

(
−gαβ +

kαkβ
m2
Vi

)]
, (41)

Mµ
τ (W ′+W ′−li) =

∫ d4k

(2π)4
ū(p2)

(
C∗τliW ′γ

νPL
) [
i
6k
k2

] (
CτliW ′γ

λPL
)
u(p1)

×
[

i

(k − p2)2 −m2
W ′

(
−gαν +

(k − p2)α(k − p2)ν
m2
W ′

)]
AαµβVW ′W ′

×
[

i

(k − p1)2 −m2
W ′

(
−gβλ +

(k − p1)β(k − p1)λ
m2
W ′

)]
, (42)

Mµ
τ (Φ−i W

+
i li) =

∫ d4k

(2π)4
ū(p2)

(
CτliΦ−i

) [
i
6k
k2

] (
CτliW+

i
γβPL

)
u(p1)

×
 i

(k − p2)2 −m2
Φ−i

 (CW+
i V Φ−i

gµν
)

×
 i

(k − p1)2 −m2
W+
i

−gβν +
(k − p1)β(k − p1)ν

m2
W+
i

 , (43)

Mµ
τ (W−

i Φ+
i li) =

∫ d4k

(2π)4
ū(p2)

(
CτliW−i

γαPL
) [
i
6k
k2

] (
CτliΦ+

i

)
u(p1)

×
 i

(k − p2)2 −m2
W+
i

−gαν +
(k − p2)α(k − p2)ν

m2
W−i


×
(
CW−i V Φ+

i
gµν

)  i

(k − p1)2 −m2
Φ+
i

 , (44)

Mµ
τ (ZHili) =

∫ d4k

(2π)4
ū(p2)

(
γα(FVi + FAiγ

5)
) [
i
6k +mτ

k2 −m2
τ

]
(CτliHi)u(p1)

×
[

i

(k − p2)2 −m2
Z

(
−gαν +

(k − p2)α(k − p2)ν
m2

Z

)]
(CHiZZ g

µν)

×
[

i

(k − p1)2 −m2
Hi

]
, (45)

where FVi and FAi denote the form factors of the vector and axial-vector. On the other hand,

Z = Z,Z ′, while C (or C∗) denotes the coupling constants of the corresponding vertices. The
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tensor AαµβVW ′W ′ is provided in Table IX of Appendix A. From these amplitudes, we obtain the

new physics contributions induced by the scalar and vector bosons, particles of the BLHM.

The effects of the new physics are determined in the following way

aτ ≡ aBLHMτ = [aτ ]
Si + [aτ ]

Vi + [aτ ]
Si−Vi , (46)

aWτ ≡ aW−BLHMτ = [aWτ ]Si + [aWτ ]Vi + [aWτ ]Si−Vi . (47)

We also consider the total contributions, that is, which result from the sum of the con-

tributions of the SM (see Appendix B) and BLHM.

ατ = aSMτ + aBLHMτ , (48)

αWτ = aW−SMτ + aW−BLHMτ . (49)

IV. NUMERICAL RESULTS

For our numerical analysis of the electromagnetic and weak properties of the tau-lepton in

the context of the SM and BLHM, we briefly review the free parameters of the BLHM. Sub-

sequently, we discuss the numerical contributions generated for the AMDM and AWMDM

of the τ -lepton in each study scenario.

A. Parameters space of the BLHM

We consider the following BLHM input parameters: mA0 , mη0 , tan β, tan θg, f and F .

The pseudoscalar mass A0: This parameter is fixed around 1000 GeV, our choice is

consistent with the current search results for new scalar bosons [50]. Data recorded by the

ATLAS experiment at the LHC, corresponding to an integrated luminosity of 139 fb−1 from

proton-proton collisions at a center-of-mass energy 13 TeV, were used to search for a heavy

Higgs boson, A0, decaying into ZH, where H denotes another heavy Higgs boson with mass

mH > 125 GeV.

The scalar mass η0: In the BLHM scenario, the free parameters m4,5,6 [41] are introduced

to break all the axial symmetries in the Higgs potential, giving positive masses to all scalars.
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Specifically, the η0 scalar receives a mass equal to m4 = mη0 = 100 GeV, according to the

BLHM, and the restriction m4
>∼ 10 GeV must be considered [41].

The ratio of the VEVs of the two Higgs doublets, tan β: Several theoretical con-

straints can be applied to this parameter, primarily due to perturbativity requirements.

Two constraints limit the value of tan β, the first of which is the requirement that λ0 < 4π,

leading to an upper bound according to Eq. (50). A lower bound also exits and is set by

examining the radiatively induced contributions to m1 and m2 in the model, which suggests

that tan β > 1 [41].

1 < tan β <

√√√√√√√√
2 + 2

√
(1− m2

h0

m2
A0

)(1− m2
h0

4πv2
)

m2
h0

m2
A0

(1 +
m2
A0
−m2

h0

4πv2
)

− 1. (50)

From this inequality, we can find the range of allowed values for the parameter tan β. In

particular, for mA0 = 1000 GeV, it is obtained that 1 < tan β < 10.45.

The mixing angle θg: The gauge couplings gA and gB, associated with the SU(2)LA and

SU(2)LB gauge bosons, can be parametrized in a more phenomenological fashion in terms of

a mixing angle θg and the SU(2)L gauge coupling: tan θg = gA/gB and g = gAgB/
√
g2
A + g2

B.

For simplicity, it is assumed that tan θg = 1 [44], which implies that the gauge couplings gA

and gB are equal. The gA,B values are generated using the restriction g = 0.6525.

Symmetry breaking scale f : The BLHM features a global SO(6)A×SO(6)B symmetry

that is broken to a diagonal SO(6)V at a scale f ∼ O(TeV) when a nonlinear sigma field,∑
, develop a VEV. Bounds on the f scale arise when tan β limits, fine-tuning constraints

on the heavy quark masses, and experimental restrictions from producing of heavy quarks

are considered. Refs. [42] and [51] establish that f ∈ (700, 3000) GeV.

Symmetry breaking scale F : A second global symmetry of the SU(2)C × SU(2)D form

is also present in the BLHM, and is broken to a diagonal SU(2) at a scale F > f when a

second nonlinear sigma field, ∆, develops a VEV. Due to the characteristics of the BLHM,

the energy scale F acquires sufficiently large values compared to the f scale. The purpose is

to ensure that the new gauge bosons are much heavier than the exotic quarks. In this way,

F ∈ [3000, 6000] GeV [41, 42].

To predict the estimates of the AMDM and AWMDM of the tau-lepton, in Table III, we
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summarize the values used for the parameters involved in our analysis.

TABLE III: Values assigned to the free parameters involved in our numerical analysis in the

context of the BLHM.

Parameter Value

mA0 1000 GeV

mη0 100 GeV

tanβ 3

tan θg 1

f [1000, 3000] GeV

F [3000, 6000] GeV

B. AMDM of the tau-lepton at the BLHM

At the one-loop level, the electromagnetic properties of the tau-lepton are induced by

the scalar and vector bosons of the BLHM via the Feynman diagrams of Fig. 1. The

contributions generated by these diagrams are classified into three types for analysis: scalar,

vector, and scalar-vector. Below, we focus on the potential effects of the new particles that

contribute to the AMDM of tau-lepton, as they could generate a significant enhancement in

the value of aτ (aτ ≡ aBLHMτ ) compared to the SM prediction aSMτ . In the BLHM, as in the

SM, the τ EDM is multiloop suppressed. Therefore, in this subsection, we report only the

values of aτ .

For this purpose, we start by solving the amplitudes generated by Eqs. (40)-(44), the

method we use to solve is the Passarino-Veltman reduction scheme. As indicated above,

Table III assigns values to the free parameters involved in our numerical analysis. The

parameter tan θg = gA/gB is of particular interest since in this paper, as in Ref. [44], it is

assumed for simplicity that tan θg = 1 which implies that the gauge couplings gA and gB

are equal. Another possible study scenario it is for tan θg 6= 1 (sin θg 6= cos θg). In this

case, we can predict that the values for aτ and aWτ do not change significantly in this new

scenario. As will be shown later, the reason for this is that the Feynman rules for vertices

that involve diagrams that provide the largest contributions (see Figs. 1(a) and 2(a)), that is,
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the terms that contain sin θg and cos θg are inversely proportional to (f 2 +F 2) (see Table IX

in Appendix A), and therefore suppress these additional contributions since f ∈ [1000, 3000]

GeV and F ∈ [3000, 6000] GeV. When tan θg = 1, the Feynman rules for the AγW
+φ−

and AγW
+η− vertices, as well as their respective Hermitian conjugates, are canceled (see

Table X in Appendix A). Thus, they lead to the non-contribution of specific Feynman

diagrams shown in Figs. 1(d) and 1(e).

After solving for the amplitudes, we extract the form factors proportional to the σµνqν

tensor, these form factors contain in coded away the [aτ ]
Si , [aτ ]

Vi and [aτ ]
Si−Vi . Concerning

[aτ ]
Si−Vi that represents the scalar-vector contributions to the AMDM of the τ -lepton, its

corresponding form factors turn out to be zero. Therefore, [aτ ]
Si−Vi has no effect on aτ .

The only non-zero contributions to the AMDM aτ of the tau-lepton arise due to the scalar

contributions and vector contributions shown in Figs. 1(a) and 1(b)-1(c), respectively.
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FIG. 3: a) Individual scalar contributions to Re(aτ ). b) Individual vector contributions to

Re(aτ ). The plots are obtained with the fixed value of F = 4000 GeV. The values provided

in Table III are used for the remaining model parameters.

In Fig. 3, we show the partial contributions to aτ due to the different particles in-

volved, and these individual contributions are classified in aτ (Si) and aτ (Vi), depend on

the energy scale f and generate purely real values. Specifically, Fig. 3(a) shows the curves

of the contributions generated by the scalars η0, A0, φ0, σ and H0. In this figure, we

can appreciate that the scalar η0 provides the largest positive contribution with Re[aτ (η
0)]

= [2.22 × 10−11, 2.43 × 10−12] while the smallest negative contribution is given by the H0
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scalar with Re[aτ (H0)] = −[2.24, 2.27] × 10−12. The remaining scalars generate suppressed

contributions, one or more orders of magnitude smaller compared to the main contribu-

tion Re[aτ (η
0)]: Re[aτ (A0)] = [2.72, 2.67] × 10−12, Re[aτ (φ

0)] = [1.07 × 10−12, 7.82 × 10−14]

and Re[aτ (σ)] = [2.09 × 10−14, 2.96 × 10−16]. On the other hand, the vector contributions

arise from the gauge bosons W ′ and Z ′ (see Fig. 3(b)). So for the range of analysis set

for the symmetry breaking scale f , the contribution of the gauge bosons W ′± and Z ′ are

Re[aτ (W
′±)] = [9.81, 6.67] × 10−10 and Re[aτ (Z

′)] = [3.92, 2.67] × 10−10, respectively. Ac-

cording to Figs. 3(a) and 3(b), we observe that the main partial contribution to Re[aτ ] is

generated by the W ′± gauge boson. We also notice that as the energy scale f takes values

closer to 3000 GeV, the values of Re[aτ ] become smaller and smaller. In Table IV we show

the magnitudes of all partial contributions to aτ that correspond to the virtual particles

circulating in the γτ+τ− vertex loop.
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FIG. 4: Scalar, vector and total contributions to Re(aτ ). The plot is obtained with the

fixed value of F = 4000 GeV. The values provided in Table III are used for the remaining

model parameters.

In Fig. 4, we also describe the behavior of Re[aτ (scalar)] and Re[aτ (vector)], as well as

the total of these two contributions. Re[aτ (scalar)] and Re[aτ (vector)] stand for the sum of

all individual contributions to Re[aτ ] due to the scalar and vector bosons, respectively. Note

that the magnitude of the vector contribution dominates concerning the scalar contribution

so that the total contribution receives significant contributions from the vector sector. The

numerical estimates obtained for the three sectors are Re[aτ (vector)] = [1.37× 10−9, 9.34×
10−10], Re[aτ (scalar)] = [2.38× 10−11, 2.90× 10−12] and Re[aτ (total)] = [1.40× 10−9, 9.37×
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10−10] for f = [1000, 3000] GeV. According to these numerical data, we find that effectively

the vector and total contribution acquire values of the same order of magnitude, which does

not occur with the scalar contribution, which generates slightly small contributions, thus

interfering very weakly with the total contribution.

Until now, the sensitivity of the total AMDM of the tau-lepton has been measured by

varying the first symmetry breaking scale f . However, it also depends on the second sym-

metry breaking scale F . Therefore, it is worthwhile to examine the dependence of aτ on

the scale F . Thus, in Fig. 5(a), we show the level of sensitivity exhibited by the τ AMDM

when varying the F energy scale while keeping the f scale fixed, the fixed values assigned

to the f scale are 1000, 2000 and 3000 GeV. For the three distinct energy scales, we find

that the numerical predictions in the τ AMDM are Re[aτ ] = [2.36 × 10−9, 6.54 × 10−10],

Re[aτ ] = [1.80 × 10−9, 5.89 × 10−10] and Re[aτ ] = [1.30 × 10−9, 5.21 × 10−10], respectively.

It is important to note that these contributions to aτ acquire only real values and are all of

the same order of magnitude, 10−9− 10−10. These values decrease drastically as the F scale

increases up to 6000 GeV. As we observed in the plot, the dominant contribution arises for

small values of the f scale, particularly when f = 1000 GeV. Concerning, Fig. 5(b), we plot

the curves of the contributions to aτ in the analysis range of f = [1000, 3000] GeV, now we

fix the scale F and assign values such as 3000, 4000, 5000 and 6000 GeV. For these fixed

values of F , we explore the sensitivity of Re(aτ ) and find that the corresponding numeri-

cal estimates are Re[aτ ] = [2.36, 1.30] × 10−9, Re[aτ ] = [1.40 × 10−9, 9.37 × 10−10], Re[aτ ]

= [9.21, 6.89] × 10−10 and Re[aτ ] = [6.54, 5.21] × 10−10. Again, Re[aτ ] ∼ 10−9 − 10−10 and

also acquires large values for small values of the F scale, this being F = 3000 GeV. By

comparison, we find that Re[aτ ] takes values of the same order of magnitude if F is varied

while f is fixed or the opposite. Although specifically, Re[aτ ] obtains larger values when

f = 1000 GeV or F = 3000 GeV.
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FIG. 5: a) Total contribution to Re(aτ ) for different values of the energy scale f . b) Total

contribution to Re(aτ ) for different values of the energy scale F . The plots are obtained for

specific fixed values of the f or F scale. The values provided in Table III are used for the

remaining parameters of the model.
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FIG. 6: Total contribution to Re(aτ ) for different values of tan β. The plot is obtained with

fixed values of the f = 1000 GeV and F = 4000 GeV. The values provided in Table III are

used for the remaining parameters of the model.

We now turn to examine the behavior of the real part of aτ as a function of the mass of

the pseudoscalar A0 or the charged scalar H±, which by the particular characteristics of the

BLHM mA0 = mH± . In this case, we are interested in investigating the phenomenological
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details associated with the increase of mA0 (or mH±) vs. Re[aτ ]. According to Eq. (50),

the parameter tan β is directly related to mA0 , since the range of values that tan β could

take is established precisely by the value assigned to mA0 , i.e., for mA0 = 1000 GeV and

mA0 = 1500 GeV the respective ranges of values for the parameter tan β, tan β ∈ (1, 10.45)

and tan β ∈ (1, 11.99) are generated. To evaluate the numerical contributions of Re[aτ ],

we propose to vary the mA0 parameter from 1000 GeV to 1500 GeV and also take certain

values of tan β in the allowed value space, that is, tan β = 3, 4, 6, 8 and 10. Fig. 6 shows

the dependence of Re[aτ ] on mA0 , we observe that the main signal is reached for tan β = 3

while the lowest signal is obtained for tan β = 10, Re[aτ ] = [1.3971, 1.3968] × 10−9 and

Re[aτ ] = [1.3969, 1.3967] × 10−9, respectively. For the remaining curves, Re[aτ ] ∼ 10−9.

According to our predictions, Re[aτ ] shows a dependence on the mA0 parameter. However,

Re[aτ ] has a small sensitivity to changes in the parameter tan β since the numerical values

obtained by Re[aτ ] are of the same order of magnitude for different choices in the values of

tan β.

TABLE IV: The magnitude of the partial contributions to aτ of the BLHM. The data

are obtained by fixing the f and F scales, f = 1000 GeV and F = 4000 GeV. The values

provided in Table III are used for the rest of the model parameters. abc denotes the different

particles running in the loop of the vertex γτ+τ−.

f = 1000 GeV, F = 4000 GeV

Couplings abc (aτ )abc

σττ −2·09× 10−14 + 0 i

A0ττ 2·72× 10−12 + 0 i

H0ττ −2·24× 10−12 + 0 i

η0ττ 2·22× 10−11 + 0 i

φ0ττ 1·07× 10−12 + 0 i

Z ′ττ 3·92× 10−10 + 0 i

W ′+W ′−ντ 9·81× 10−10 + 0 i
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C. AWMDM of the tau-lepton at the BLHM

In this subsection, we perform the numerical estimation of the AWMDM aWτ (aWτ ≡
aW−BLHMτ ) of the tau-lepton induced by a scalar, vector and scalar-vector bosons of the

BLHM depicted in Figs. 2(a), 2(b)-2(c) and 2(d)-2(e), respectively. As in Subsection IV B,

in the tan θg = 1 scenario implying that sin θg = cos θg leads to the cancellation of some

Feynman diagrams in Figs. 2(d)-2(e), this is because the Feynman rules for the involved

vertices ZW+φ−, ZW+η− and ZµZ
′
νHi are made zero by the condition mentioned above (see

Table X in Appendix A). The remaining Feynman diagrams provide non-zero contributions

to aWτ .

In this sense, we start by showing in Fig. 7 the contributions of the different scalars to the

τ AWMDM, here and in the subsequent cases aWτ acquire a real part and an imaginary part.

We plot the behavior of aWτ as a function of the new physical scale f for the interval f =

[1000, 3000] GeV, while the other parameters assume fixed values. In the left plot of Fig. 7,

it can see that the great majority of the scalars involved generate positive contributions

to Re [aWτ ], and only the H0 and σ scalars contribute negatively. Of all the scalars, the

heaviest of them is σ and it contributes quite small values to Re [aWτ ], |Re [aWτ (σ)]| = [5.16×
10−16, 8.20× 10−18]. In contrast, the scalars η± and H± generate the main contributions to

Re [aWτ ] in the range of analysis established for the f energy scale, i.e, Re [aWτ (η±)] = [1.38×
10−13, 9.51× 10−14] for the interval f = [1000, 1100] GeV and Re [aWτ (H±)] = (9.51, 9.35]×
10−14 for f = (1100, 3000] GeV. Concerning the right plot of Fig. 7, it can observe that

again the H0 and σ scalars contribute negatively, in this case to Im (aWτ ), while the rest of

the scalars contribute positively. The η0 scalar provides the largest contributions to Im [aWτ ],

while the smallest contribution is induced by σ: Im [aWτ (η0)] = [3.28 × 10−13, 3.58 × 10−14]

and |Im [aWτ (σ)]| = [1.14× 10−16, 1.38× 10−18].
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FIG. 7: Individual scalar contributions to aWτ . a) Re(aWτ ). b) Im(aWτ ). The plots are

obtained with the fixed value of F = 4000 GeV. The values provided in Table III are used

for the remaining model parameters.

We discuss the contributions induced by the vector and scalar-vector bosons to the τ

AWMDM. We begin by examining the real and imaginary parts of the BLHM partial contri-

butions to aWτ . Thus, from Fig. 8, we can see that all the generated contributions are positive

except the real part of the scalar-vector contribution, induced by Z and H0. The dominant

contributions for both the real and imaginary part of aWτ are achieved when the vector boson

W ′± circulates in the Zτ+τ− vertex loop. In this case, the corresponding numerical contribu-

tions are Re[aWτ (W ′±)] = [2.72, 1.85]× 10−9 and Im[aWτ (W ′±)] = [9.01, 4.16]× 10−13. Other

subdominant contributions appear when particles W ′+φ−, φ+W ′− and Z ′ circulate in the

above-mentioned vertex loop: Re[aWτ (W ′+φ−)] = Re[aWτ (φ+W ′−)] = [4.67, 3.23]× 10−10 and

Im[aWτ (Z ′)] = [2.42, 1.12] × 10−13. Complementarily, the minor contributions arise for the

following cases: |Re[aWτ (ZH0)]| = [5.69, 5.83]×10−12 and Im[aWτ (ZH0)] = Im[aWτ (W ′+φ−)] =

Im[aWτ (W ′+η−)] = 0. If we compare our numerical estimates, we find that the real parts of

the partial contributions provide significant contributions to aWτ since they are at least one

order of magnitude larger than the imaginary parts. In Table V, we show the magnitudes

of all partial contributions to aWτ that correspond to the virtual particles circulating in the

Zτ+τ− vertex loop.
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FIG. 8: Individual vector and scalar-vector contributions to aWτ . a) Re(aWτ ). b) Im(aWτ ).

The plots are obtained with the fixed value of F = 4000 GeV. The values provided in

Table III are used for the remaining model parameters.

In the following, we show the curves that represent the sum of all individual contributions

due to the scalar and vector bosons and the scalar-vector contributions. The magnitude of

these contributions is shown in Fig. 9. Here, we observe that the total vector contribution

dominates over the scalar and scalar-vector contributions since the latter are suppressed.

With respect to the real part of aWτ depicted in Fig. 9(a), we can observe more closely that

Re[aWτ (total)] and Re[aWτ (vector)] obtain values of the same order of magnitude, 10−9, while

Re[aWτ (s-v)] ∼ 10−10 and Re[aWτ (scalar)] ∼ 10−13. With the imaginary part of aWτ (see

Fig. 9(b)) the same happens as the real part, in this case, Im[aWτ (total)] ∼ Im[aWτ (vector)]

∼ 10−12−10−13, Im[aWτ (scalar)] ∼ 10−13−10−14 and Im[aWτ (s-v)] = 0. It is worth mentioning

that Figs. 9(a) and 9(b) were obtained for a fixed value of the other physical scale of the

BLHM, F = 4000 GeV, which is also involved in our calculations. We later present the

sensitivity of aWτ for other values of the F scale.
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FIG. 9: Scalar-vector (s-v), scalar, vector, and total contributions to aWτ . a) Re(aWτ ). b)

Im(aWτ ). The plots are obtained with the fixed value of F = 4000 GeV. The values provided

in Table III are used for the remaining model parameters.
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FIG. 10: Total contribution to aWτ for different values of the energy scale f . a) Re(aWτ ). b)

Im(aWτ ). The plots are obtained for specific fixed values of the f scale. The values provided

in Table III are used for the remaining parameters of the model.

As already commented, the BLHM is based on two distinct global symmetries that break

into diagonal subgroups at different scales, f and F > f . These scales represent the scales of

the new physics. Therefore, it is very convenient to analyze the behavior of the τ AWMDM as

a function of these energy scales since the masses of the new scalar and vector bosons strongly
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depend on them. Thus, similar to what was performed in the previous subsection, we study

the dependence of aWτ on F while maintaining fixed the f scale or the opposite. In Fig. 10,

we begin by showing a variation of the scale F from 3000 GeV to 6000 GeV for three different

f energy scales, i.e., f = 1000 GeV, 2000 GeV, 3000 GeV. In this plot, we appreciate that

the main contributions to aWτ arise for f = 1000 GeV. This occurs for both the real and the

imaginary part of aWτ : Re[aWτ ] = [6.64, 1.80]×10−9 and Im[aWτ ] = [3.68×10−12, 6.00×10−13],

respectively. On the other hand, the weakest contributions appear when the scale f takes

larger values, especially when f = 3000 GeV: Re[aWτ ] = [3.71, 1.47] × 10−9 and Im[aWτ ] =

[1.06× 10−12, 2.05× 10−13].
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FIG. 11: Total contribution to aWτ for different values of the energy scale F . a) Re(aWτ ). b)

Im(aWτ ). The plots are obtained for certain fixed values of the F scale. The values provided

in Table III are used for the remaining parameters of the model.

Now, we examine the dependence of aWτ on the f scale for certain fixed values of the F

scale, i.e., F = 3000 GeV, 4000 GeV, 5000 GeV, 6000 GeV. With these values of F , we

plot the curves shown in Fig. 11. In this case, the largest contributions to aWτ are reached

for F = 3000 GeV, these contributions are Re[aWτ ] = [6.64, 3.71] × 10−9 and Im[aWτ ] =

[3.68, 1.06] × 10−12. On the opposite side, the smallest contributions to aWτ are generated

when F = 6000 GeV: Re[aWτ ] = [1.80, 1.47]× 10−9 and Im[aWτ ] = [6.00, 2.05]× 10−13.

According to the numerical results, it is found that aWτ is sensitive to a slight change in

the values of the f and F scales, this occurs as long as these parameters are in the established

intervals. When aWτ depends on F , we observe that aWτ has a decrease of about one order
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of magnitude as F increases up to 6000 GeV. For the following case, when aWτ depends on

f , we also have a decrease of at most one order of magnitude as f reaches 3000 GeV. In

summary, we can affirm that aWτ gets large values when f = 1000 GeV or F = 3000 GeV,

while smaller values are obtained for aWτ when the scales tend to take values close to their

established upper limits. In short, aWτ = 6.64 × 10−9 + 3.68 × 10−12 i is the largest value

found when f = 1000 GeV and F = 3000 GeV.

Finally, Fig. 12 show the aWτ behavior as a function of mA0 or mH± , for tan β = 3, 4, 6, 8

and 10. From this figure, we can observe that the largest contributions to the τ AWMDM

arise when tan β = 3. This happens for the real and imaginary part of aWτ : Re[aWτ ] =

[3.91307, 3.91301]× 10−9 and Im[aWτ ] = [1.50892, 1.50353]× 10−12. As the parameter, tan β,

increases more suppressed curves are generated. This occurs in the case of tan β = 10 which

gives the following values corresponding to aWτ , Re[aWτ ] = [3.91298, 3.91297] × 10−9 and

Im[aWτ ] = [1.50500, 1.50288] × 10−12. Furthermore, aWτ acquires smaller values as the mass

of the pseudoscalar A0 increases up to 1500 GeV. However, we can say that the changes or

effects on aWτ are not so great since the numerical values they acquire remain of the same

order of magnitude.
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FIG. 12: Total contribution to aWτ for different values of tan β. a) Re(aWτ ). b) Im(aWτ ).

The plots are obtained for fixed values of the f = 1000 GeV and F = 4000 GeV. The values

provided in Table III are used for the remaining parameters of the model.
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TABLE V: The magnitude of the partial contributions to aWτ of the BLHM. The data

are obtained by fixing the f and F scales, f = 1000 GeV and F = 4000 GeV. The values

provided in Table III are used for the rest of the model parameters. abc denotes the different

particles running in the loop of the vertex Zτ+τ−.

f = 1000 GeV, F = 4000 GeV

Couplings abc
(
aWτ

)abc
σττ −2·83× 10−16 − 1·14× 10−16 i

A0ττ 5·98× 10−14 + 3·33× 10−14 i

H0ττ −4·94× 10−14 − 2·74× 10−14 i

η0ττ 1·15× 10−13 + 3·28× 10−13 i

φ0ττ 2·05× 10−14 + 1·44× 10−14 i

H±ντντ 9·52× 10−14 + 1·21× 10−15 i

η±ντντ 1·38× 10−13 + 1·53× 10−14 i

φ±ντντ 4·25× 10−14 + 1·65× 10−15 i

Z ′ττ 2·51× 10−10 + 2·42× 10−13 i

W ′±ντντ 9·33× 10−10 + 9·01× 10−13 i

W ′+W ′−ντ 1·79× 10−9 + 0 i

W ′+φ−ντ 4·67× 10−10 + 0 i

φ+W ′−ντ 4·67× 10−10 + 0 i

W ′+η−ντ 2·34× 10−12 + 0 i

η+W ′−ντ 2·34× 10−12 + 0 i

ZH0τ −5·69× 10−12 + 0 i

D. Contributions of the SM and BLHM to the AMDM and AWMDM of the

tau-lepton

As previously defined (Eqs. (48) and (49)), the contribution of the SM and BLHM par-

ticles to the AMDM and AWMDM of the tau-lepton will be represented by ατ and αWτ ,

respectively. In this way, in Tables VI and VII we provide the partial and total numerical

values for ατ and αWτ . In these tables, we find that all new diagrams arising in the BLHM
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have a small numerical impact on the AMDM and AWMDM of the τ -lepton. This is partly

because both aτ and aWτ acquire values inversely proportional to the energy scales f and

F . Only some partial contributions are comparable to the SM partial contributions (see

Appendix B) but not larger than them. The SM particles provide the largest contributions

to ατ and αWτ . According to the numerical data, we find that ατ = 116090·46 × 10−8 and

αWτ = −1·92× 10−6 − 0·57× 10−6 i.

TABLE VI: Partial contributions to ατ . abc denotes the different particles running in the

loop of the vertex γτ+τ−.

f = 1000 GeV, F = 4000 GeV

Couplings abc (ατ )abc

γττ 116140·97× 10−8 + 0 i

Zττ + Z ′ττ 51·59× 10−8 + 0 i

h0ττ +A0ττ +H0ττ + φ0ττ + η0ττ + σττ 0.09× 10−8 + 0 i

ντW
+W− + ντW

′+W ′− −102·19× 10−8 + 0 i

Total ατ = 116090·46× 10−8 + 0 i

TABLE VII: Partial contributions to αWτ . abc denotes the different particles running in the

loop of the vertex Zτ+τ−.

f = 1000 GeV, F = 4000 GeV

Couplings abc
(
αWτ

)abc
γττ 3·09× 10−7 − 1·24× 10−7 i

Zττ + Z ′ττ 4·05× 10−8 + 1·86× 10−8 i

h0ττ +A0ττ +H0ττ + φ0ττ + η0ττ + σττ −6·58× 10−12 − 1·34× 10−11 i

W±ντντ +W ′±ντντ +H±ντντ + φ±ντντ + η±ντντ −9·13× 10−7 − 4·66× 10−7 i

ντW
+W− + ντW

′+W ′− −1·37× 10−6 + 0 i

τh0Z + τH0Z 1·35× 10−8 + 0 i

W ′+φ−ντ + φ+W ′−ντ +W ′+η−ντ + η+W ′−ντ 9·39× 10−10 + 0 i

Total αW
τ = −1·92× 10−6 − 0·57× 10−6 i
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V. CONCLUSIONS

We have calculated the contributions generated by the SM (see Appendix B) and BLHM

particles to the AMDM and AWMDM of the tau-lepton at the one-loop level. Within the

SM, we find that our predictions for aSMτ and aW−SMτ are in agreement with the results

reported in the literature. Concerning the new physics, this arises in the BLHM scenario

and is induced by the new scalar and vector bosons. The new contributions that these

generate to aτ and aWτ are emphasized.

The BLHM has two global symmetries that break at different energy scales, so f and F

represent the scales of the new physics, and at this level, the new scalar and vector bosons

acquire their respective masses. Therefore, we have analyzed the dependence of aτ and aWτ

on the physical scales f and F , and we find that both aτ and aWτ are sensitive to changes in

f and F . Large values of these energy scales, as long as they are in the allowed intervals,

suppress the contributions to aτ and aWτ . However, when these scales acquire the respective

minimum values, f = 1000 GeV and F = 3000 GeV, large values are reached for the τ

AMDM and AWMDM: aτ = 2.36 × 10−9 + 0 i and aWτ = 6.64 × 10−9 + 3.68 × 10−12 i,

respectively. In this work, we also examine the dependence of aτ and aWτ on the mA0

parameter. Our results indicate that both show a small sensitivity to changes in the mA0

parameter since the contributions they acquire remain of the same order of magnitude,

aτ ∼ 10−9 and aWτ ∼ 10−9.

It is interesting to study the contributions of the new physics as they could significantly

improve the AMDM and AWMDM of the tau-lepton. This is because, for now, the sensitivity

reached by the colliders is beyond the level of precision required to test the SM predictions

on aSMτ and aSM−Wτ . Therefore, it is worth studying the effects of new particles not described

by the SM as they could generate potentially significant contributions and be within reach of

future experimental measurements. In the BLHM scenario, we found that the contributions

generated by the new scalar and vector bosons to the τ AMDM and AWMDM are aτ ∼
10−9 and aWτ ∼ 10−9. These numerical values are smaller than the SM contributions.

However, they are similar in size and even more significant than those arising in some SM

extensions, such as the Simplest Little Higgs model, aτ ∼ 10−9 and aWτ ∼ 10−9 [52]; the

Two-Higgs Doublet models (type-I and type-II), aWτ ∼ 10−9− 10−10 [53, 54]; the Two-Higgs

Doublet models type-III with textures, aτ ∼ 10−7 − 10−8 and aWτ ∼ 10−7 − 10−10 [55];
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Scalar Leptoquark models, aτ ∼ 10−9 and aWτ ∼ 10−9 [56]; the Minimal Supersymmetric

Standard Model with a mirror fourth generation, aτ ∼ 10−6 − 10−10 [57]; unparticle physics

(for
∧
U = 10 TeV), aτ ∼ 10−9 − 10−10 and aWτ ∼ 10−9 − 10−10 [58]; the type-I and type-

III seesaw models, |aIτ | < 1.87 × 10−8 and |aIIIτ | < 7.55 × 10−9 [59]; and finally, in the

framework of the effective lagrangian approach and the Fritzsch-Xing lepton mass matrix,

aτ ∼ 10−11 [60].

Currently, the experimental limits in the τ AMDM and AWMDM are well above theo-

retical predictions. Our results are also outside the detection range of future experiments,

so there is insufficient sensitivity to be tested and cross-checked with experimental values.

The results presented here complement other studies performed on models with an extended

scalar sector and may be helpful to the scientific community.
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Appendix A: The Feynman rules for the BLHM

In this appendix, we present the Feynman rules for the BLHM involved in our calculation

for the AMDM and AWMDM of the tau-lepton. It is convenient to define the following useful

notation:
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cβ = cos β, (A1)

sβ = sin β, (A2)

sα = sinα, (A3)

cα = cosα, (A4)

cg = cos θg, (A5)

sg = sin θg, (A6)

xs =
1

2 cos θW
sin θg cos θg(sin

2 θg − cos2 θg), (A7)

yτ =
mτ

v sin β

(
1− v2

3f 2

)−1/2

. (A8)

TABLE VIII: Feynman rules for the BLHM involving the escalars σ, h0, H0, φ0, η0, H±,

φ±, η±, the pseudoscalar A0 and the vector bosons Z ′ and W ′±.

Vertex Couplings

στ̄τ
cβvyτ√

2f

h0τ̄ τ cαyτ −
(
16cβsαsβv

2+cα
(
8c2βv

2+24s2βv
2
))
yτ

24f2

H0τ̄ τ −sαyτ +

(
sαc2β−2cαsβcβ+3sαs2β

)
v2yτ

3f2

A0τ̄ τ −icβyτ

η0τ̄ τ − isβvyτ
2f

φ0τ̄ τ
isβvyτ

2f

H+ν̄ττ
√

2cβyτPR

η+ν̄ττ
isβvyτ√

2f
PR

φ+ν̄ττ − isβvyτ√
2f

PR

Z ′τ̄ τ 1
2 igγ

µPL

W ′+ν̄ττ − ig√
2
γµPL
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TABLE IX: Self-couplings of gauge bosons in the BLHM.

Vertex Couplings

Zµ(q)W ′−α (k)W ′+β (p) ig cW [δβµ (pα − qα) + δαµ (qβ − kβ) + δαβ (kµ − pµ)]

− g v2xs(2 c2g−2 s2g−cgsgcW (2cW+1))

2cgsg(f2+F 2)
[δβµ (pα − qα) + δαµ (qβ − kβ)

+ δαβ (kµ − pµ)]

Aµ(q)W ′−α (k)W ′+β (p) ig sW [δαβ (kµ − pµ) + δβµ (pα − qα) + δαµ (qβ − kβ)]

− g v2cW sW xs
(f2+F 2)

[δαβ (kµ − pµ) + δβµ (pα − qα) + δαµ (qβ − kβ)]

TABLE X: Three-point couplings of two gauge bosons to a scalar in the BLHM.

Vertex Couplings

ZZ ′h0 −gsW v(c2g−s2g)(g2+g′2) sin(α+β)

2cgsgg′
+

gsW v3(c2g−s2g)(g2+g′2) sin(α+β)

6cgsgg′f2

+
v3xs sin(α+β)(c2ggg′sW (g2+g′2)+2cgsg(g4s2W+g2g′2(2s2W+1)+g′4s2W )−gg′s2gsW (g2+g′2))

2cgsgg′2(f2+F 2)

ZZH0
s2W v(g2+g′2)

2
cos(α+β)

2g′2 − s2W v3(g2+g′2)
2

cos(α+β)

6g′2f2

− sW v3xs(g2+g′2) cos(α+β)(c2g(−g)g′+cgsgsW (g2+g′2)+gg′s2g)
2cgsgg′2(f2+F 2)

ZZ ′H0 −gsW v(c2g−s2g)(g2+g′2) cos(α+β)

2cgsgg′
+

gsW v3(c2g−s2g)(g2+g′2) cos(α+β)

6cgsgg′f2

+
v3xs cos(α+β)(c2ggg′sW (g2+g′2)+2cgsg(g4s2W+g2g′2(2s2W+1)+g′4s2W )−gg′s2gsW (g2+g′2))

2cgsgg′2(f2+F 2)

AγW
+η−

g3s2W v4xs(c2g+s2g)
8cgsgg′f(f2+F 2)

AγW
′+η− −g2sW v2(c2g+s2g)

8cgsgf
+

g3s2W v4xs(c2g+s2g)
16cgsgg′f(f2+F 2)

AγW
+φ−

fg3s2W v2xs(c2g+s2g)
2cgsgg′(f2+F 2)

− g3s2W v4xs(c2g+s2g)
8cgsgg′f(f2+F 2)

AγW
′+φ− −fg2sW (c2g+s2g)

2cgsg
+

g2sW v2(c2g+s2g)
8cgsgf

+
fg3s2W v2xs(c2g+s2g)

4cgsgg′(f2+F 2)
− g3s2W v4xs(c2g+s2g)

16cgsgg′f(f2+F 2)

ZW+η− −g2s2W v4xs(c2g+s2g)
8cgsgf(f2+F 2)

ZW ′+η−
gg′sW v2(c2g+s2g)

8cgsgf
− gsW v4xs(c2g+s2g)(gsW+g′)

16cgsgf(f2+F 2)

ZW+φ−
fg2v2xs(c2g+s2g)(g2s2W−g′2)

2cgg′2sg(f2+F 2)
− g2v4xs(c2g+s2g)(2g2s2W+g′2(s2W−2))

8cgsgg′2f(f2+F 2)

ZW ′+φ− −fg3sW (c2g+s2g)
2cgsgg′

+
gsW v2(c2g+s2g)(2g2+g′2)

8cgsgg′f
+

fg3sW v2xs(c2g+s2g)(gsW+g′)

4cgsgg′2(f2+F 2)

− gsW v4xs(c2g+s2g)(2g2+g′2)(gsW+g′)

16cgsgg′2f(f2+F 2)

34



Appendix B: The AMDM and AWMDM of the tau-lepton at the SM

In the SM, we estimate the contributions to the AMDM and AWMDM of the tau-lepton

at the one-loop level. These contributions are calculated in the unitarity gauge so that

the only Feynman diagrams that arise are those shown in Figs. 13 and 14. The first-order

contributions for aSMτ and aW−SMτ are obtained from these figures.

The prediction of the AMDM of the τ -lepton in SM is calculated by considering only one-

loop level contributions. In the literature, these contributions found are usually cataloged

as the quantum electrodynamics (QED) contribution without hadrons and the electroweak

contribution. In Table XI, we provide the numerical values of the QED contribution and

the partial electroweak contributions. In this table, we can appreciate that indeed the QED

contribution is the most important, followed by the electroweak contribution. Our result

obtained on aSMτ = 116090·33 × 10−8, is comparable to that of Ref. [26]. Regarding the

EDM of the tau-lepton, it is absent at this level.

Si(k)

τ(p1) τ(p2)

γ(q)

li li

µ

αβ

(a)

Vi(k)

τ(p1) τ(p2)

γ(q)

li li

µ

αβ

(b)

li(k)

τ(p1) τ(p2)

γ(q)

W+
W−

µ

αβ

(c)

FIG. 13: Generic Feynman diagrams that contributes to the AMDM of the tau-lepton,

li ≡ τ, ντ . a) Scalar contribution, Si ≡ h0. b) and c) Vector contributions, Vi ≡ γ, Z.
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Si(k)

τ(p1) τ(p2)

Z(q)

li li

µ

αβ

(a)

Vi(k)

τ(p1) τ(p2)

Z(q)

li li

µ

αβ

(b)

li(k)

τ(p1) τ(p2)

Z(q)

W+
W−

µ

αβ

(c)

li(k)

τ(p1) τ(p2)

Z(q)

h0 Z

µ

αβ

(d)

FIG. 14: Generic Feynman diagrams that contributes to the AWMDM of the tau-lepton,

li ≡ τ, ντ . a) Scalar contribution, Si ≡ h0. b) and c) Vector contributions, Vi ≡ γ, Z. d)

Scalar-vector contribution.

TABLE XI: Partial contributions to aSMτ . abc denotes the different particles running in the

loop of the vertex γτ+τ−.

Couplings abc
(
aSMτ

)abc
γττ 116140·97× 10−8 + 0 i

Zττ 51·55× 10−8 + 0 i

h0ττ 0.09× 10−8 + 0 i

ντW
+W− −102·29× 10−8 + 0 i

Total aSMτ = 116090·33× 10−8 + 0 i

We also estimate the AWMDM of the tau-lepton with the initial and final particles in

the on-shell. The relevant diagrams in the unitary gauge are those shown in Fig. 14, and

their numerical contributions are given in Table XII. In this table, we can appreciate that
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the largest partial contribution to aW−SMτ , in absolute value, arises when W+, W− and ντ

particles circulate in the loop. The total contribution to aW−SMτ is −1·9193×10−6−0·5713×
10−6 i. Our result is comparable to that reported in Ref. [33], although a slight difference

prevails. This is due to the fact that we used current values for the input parameters mZ ,

mW , mτ , sin θW , and α (fine-structure constant).

TABLE XII: Partial contributions to aW−SMτ . abc denotes the different particles running in

the loop of the vertex Zτ+τ−.

Couplings abc
(
aW−SMτ

)abc
γττ 3·09× 10−7 − 1·24× 10−7 i

Zττ 4·03× 10−8 + 1·86× 10−8 i

h0ττ −6·72× 10−12 − 1·38× 10−11 i

W±ντντ −9·14× 10−7 − 4·66× 10−7 i

ντW
+W− −1·37× 10−6 + 0 i

τh0Z 1·35× 10−8 + 0 i

Total aW−SMτ = −1·92× 10−6 − 0·57× 10−6 i
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