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Summary. — It is shown that there are exact solutions of the free Maxwell equa-
tions in vacuum allowing an existence of closed spherical magnetic surfaces (without
electric field on this surface and where magnetic field is tangential and its intensity
depends on time) and ring-like formations of time-dependent electric field (without
magnetic field in all points of the ring and where the electric field is tangential).
It is detected that a form of these spheres and rings does not change with time
in vacuum. One can surmise that these electromagnetic formations correspond to
Kapitsa’s hypothesis about origin and a structure of ball lightning. It is shown a
simple way to solve the equation V x a = (w/c)a which is important in the theory
of plasma.

PACS 03.50.-z — Classical field theories.
PACS 03.50.De — Classical electromagnetism, Maxwell equations.

1. — Introduction

We found that a certain class of exact solutions of free Maxwell equations (FME)
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exists which has some unexpected characteristics. The present work is devoted to the
research of the such solutions.
We shall look for solutions of the system FME as follows:

() E(r,t) =e(r)y(t) and  B(r,t) = b(r)x(t),

where 9 (t) and x(t) are some functions of time, vectors e is a polar vector and b is an
axial one.

As we will show in the next sections, such mathematically well-known solutions (see,
e.g., [1], where general solutions of the Maxwell equations was obtained) lead, however,
to the existence of rather unusual and unexpected electromagnetic formations in vacuum
such as closed spherical magnetic surfaces (without electric field on this surface and where
the magnetic field is tangential and its intensity depends on time) and ring-like formations
of the electric field (without magnetic field in all points of the ring and where the electric
field is tangential and depends on time). We will also show that these formations do not
change their form with time in vacuum.

2. — Solution of the free Maxwell equations in the form (5)

And so we are going to look for a solution of FME in the form (5). Substituting (5)
in FME we obtain

(6) dive =0,
1y
7 . =—--"b
(7) rote e
(8) divb =0,
!/
9) rotbh = l£e.
X
It is obvious that these equations are consistent if and only if
! !/
(10) —XE =wi and % = W2,

where {'} means a derivative with respect to time, w; and w, are arbitrary constants.

In order to obtain solutions of this system with three constants only, and to obtain
sinusoidal solutions, we propose that w; = ws = w. Thus, the general solution of the
system (10) is

(11) X(t) = Acos(wt —n) and P(t) = Asin(wt — 1),
where A and 7 are arbitrary constants, and equations for e and b become

(12) VXe:%b and be:%e.

In order to solve this system, let us at first note that formally summing two equa-

tions (12) we obtain

(13) Vx(e+b):%(e+b) or an:%a.
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So, at first we resolve eq. (13) with respect to a, and then we obtain from the vector a
(which, obviously, has no polarity) the polar vector e and the axial vector b. Actually,
one can express polar and axial parts of any vector without polarity, in general, as follows:

(14) e(r) = % [a(r) = a(—r)]
and
(15) » b(r) = %[a(r) + a(—r)].

Now, if we calculate a rotor of both parts of eqs. (14), (15) one can be satisfied that the
system (12) is fulfilled:

-

(16) V xe(r)= [v x a(r) — V x a(—r)] £ [%a(r) + %a(—r)] - %b(r)

1
2

N | —

and

(17)  V xb(r) = [V x a(r) +V x a(—r)] = [%a(r) - %a(—r)] = %e(r).

DO =

Here we take into account that after inverting the coordinates, the equation V x a(r) =
(w/c)a(r) becomes —V x a(—r) = (w/c)a(—r). Thus, one can see that, if we find a as a
solution of eq. (13), it means that we find e and b as solutions of the system (12).
Equation (13) was already solved in the literature (see, e.g., [2,3]).
And so, the solution(!) of eq. (13) in the spherical system of coordinates is(?)

o 2a v o, g wa
(18) a—D{TTCOSG}eT+D{r—3$m6}eg +D{Eﬁsm9}e¢.

Finally, separating vectors e and b we obtain the solution of the system (12) expressed
by components (Cartesian and spherical ones)

B oWy awr } _ wasind
(19) o= D{ o = 2= —De,
and :
xz 2 2a % 4y 2ccosé sin 6
(20) b:D{Br—g,» %7 ;3,—-6( 5 y) =3 Der+vr3 Dey,

where

azcos(%—é)-&-%sin(%r—&).

(*) Details of solving of eq. (13) see in the appendix.
(?) D is a dimension constant [D] = M'/2L%/ 2171,
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2,2

w?r
g =3a-— =

cos (% - 5) and vy =p-2a.

Let us now write the solution (5) in the explicit form, taking into account eqs. (11),
(19) and (20):

in 6
(21) E = wl)ew sin(wt — )
cr?
and
2 7 si
(22) B= [ ac;)SHDeT - (S:;leDng cos(wt — 1),
7

where 7 is an arbitrary constant. .
It follows from the solutions (21), (22) that the necessary (not sufficient!) condition
in order for these solutions to not diverge in r = 0 is

a(0) = {cos (% —5) + %sin (% —5)}

r=0

1
cosd =0 = 0= (n+ 5)7r, wheren = 0,+1,£2,....

In order to make sure that the solutions (21), (22) converge, one can calculate the
following limits(?) for 6§ = 7 /2:

3 3
Lo Lo Wt i _Qw
) e =% METie MET T
and the corresponding limits for E, B and the energy density w = EQ;; B are
. , 2Dw? cos(wt) , D2
(24) l%E =0; lgr})B = Tk, 711_)r110w = {g7c6 8 (wt),

where k is Z-ort of the Cartesian system.
The constant 7 just defines an initial wave phase of the fields E and B. So without
loss of generality we can write one non-divergent solutions only (for § = 7/2, n = 0):

in 6 2 0 v sin 6
(25) E=D [awcilgn ev] sin(wt); B=D [ a:;)s e, /j‘: eg:l cos(wt),
where
wr wr . [wr wir? | rwr
(26) a=——cos (7) + sin (7) and ) =a - —5—sin (?) ;

Note that the solution (25) can be found directly from the general solution of the Maxwell
equations obtained by Mie [1].

/

(®) We calculate these limits expanding « and + in series of powers of 7.
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3. — Steady-state electromagnetic balls in vacuum as a consequence of the
found solution

As we will show below, the solution (25) of FME leads to an existence of unusual
spherical formations of the free electromagnetic field.

3'1. Some details of the energy distribution in the field (25). — Let us write, after some
transformations, the expression for the energy density for the solution (25). One can show
that the energy density contains both the time-independent part and the time-dependent
one:

E2 B2 D2 4oy 2 2
(27) w= —;w— - {w a? sin’ 9+{ cos’ 9+T—s1n 9}}
™
D? 4a? 2 BiaB. - %
+167r{[ G 29+ e 9] izi sinze} cos(2wt).

Let us find from (27) the locus where w does not depend on ¢. It is obvious that the
loci are

1) along the axis Z in the points where tan (%) = <2 (§ = 0,m;a = 0);

2) at surfaces where r satisfies the equation 7* = o? ( ° _ 4cot? 9) One can see

the cross-section of these surfaces in fig. 3 (discontinuous curves)(?).
Now we calculate an electromagnetic energy & within a sphere of the radius R with
the center in the coordinate origin:

R =w 27
(28) Eg = /dr/d@/dcp r?sinf w(r,0,p,t) = E(R) + E(R, t),
0 0 0 '
where
D? [wiR* W2R? wR .
D) = |Z== _Z " & 2 v Y &2
(29) E(R) 6R3[ o = sin <c> a},
2
(30) E(R,t) = el cos(2wt). 1
Here a = — % cos (28) + sin (£2) and y = a — ¢ R B cos (28).

One can show ﬁom eq. (30) that the electlomagnetlc energy within spheres of the
radiuses R which are solutions of the equations(®)

(31) tan <WR) w_R’

c c

(*) All figures in this work were performed in the program “Mathematica-4.0".
(5) Tt follows from o = 0 and « = 0 correspondingly.



1308 A. ESPINOZA and A. E. CHUBYKALO

or

wR %
(32) tan (—) = [ o2R

£ C

does not change with time.

The solutions of eqs. (31), (32) alternate with each other at the number line. One
can show that a distance between these neighboring spherical surfaces tends to cm/2w
when R — oo. Let us also direct attention to an interesting fact that at the surfaces of
the spheres of the radius (31) only the magnetic field is present, and the electric field at
these surfaces does not exist. It follows directly from eq. (25) for a = 0.

3'2. Analysis of the Poynting vector’s field corresponding to the wave field (25). —
Poynting’s vector corresponding to the wave field (25) is

D? 2 gin(2 .2
(33) SZLEXB:— wa® sin( G)eo_wa'ysm 0

o . e e, | sin(2wt).

rd

Let us calculate a total momentum of the electromagnetic field (25) within a sphere
of the arbitrary radius r with the center in the coordinate origin. Because Poynting’s
vector is proportional to the vector of the density of momentum in the same point we
can just calculate the integral of Poynting’s vector over volume of the sphere.

It is easy to calculate this integral if we express spherical system orts by Cartesian
system orts:

e, =isinfcosp + jsinfsingp +kcosf and ey =icosfcosp+ jcoshsiny —ksinb.

Thus, integrating (33) over volume of the sphere we obtain
2 ; )
(34) ///STQSinedrde@:_Mk/a_sin40
32m r3

It means that the total momentum of the electromagnetic field (25) in volume bounded
by an arbitrary sphere with a center in the coordinate origin is zero at any time.

Let us now find the loci where Poynting’s vector is zero at any instant of time. It
follows from eq. (33) that conditions when Poynting’s vector is zero are

dr =0.
0

(35) a?sin(26) = 0 and aysin? 6 = 0.

From the first equation of the conditions (35) we have the following possibilities:

i) @ = 0. This automatically satisfies both conditions (35). From a = 0 we obtain
the equation

(36) tan (‘%’") = ‘*’?r

Hence, the loci for the case i) are spheres whose radiuses satisfy eq.(36).
ii) sin(20) = 0. It means that # can be 0, 7/2 or 7.



STEADY-STATE SPHERE-LIKE AND RING-LIKE FORMATIONS ETC. 1309

ii-1) If 6 is 0 or 7, in this case both equations fulfill the conditions (35). So the locus
is axis Z.

ii-2) If 6 = /2, this gives us two possibilities in order to satisfy the conditions (35):
either a = 0 (it is the case 1), see above) or v = 0. From the last we have

(37) tan (%T) = %

c

So the loci corresponding the case 6 = 7/2, and v = 0 are rings at the plane XY with
radiuses satisfying eq. (37). Note that in all points of these rings the magnetic field is
zero. ;

Now we consider spheres whose equators are mentioned rings. These spheres are
defined by the condition v = 0. One can see from eq. (33) that at these surfaces Poynting’s
vector in all points has the tangential components only. Due to this fact the conservation
of the energy within spheres of the radiuses (32) becomes more clear.

Thus, the adjusted total in looking for the loci where Poynting’s vector for the
field (25) is zero in any instant of time is

Locus 1: Axis Z. We call this axis magnetic azis because an electric field does not
exist there.

Locus 2: Rings at the plane z = 0 with radiuses satisfying eq. (37). We call these
rings electric rings because a magnetic field does not exist there.

Locus 3: Spheres with centers in the origin with radiuses satisfying eq. (36). We call
these spheres magnetic spheres because the an electric field does not exist on them.

In order to elucidate better the results of the last analysis, let us adduce the graphic
(fig. 1) where the distribution of Poynting’s vector field is shown.

We consider this distribution, for example, in the plane z = 0 (because of the axial
symmetry of the energy density and energy-flux density distribution it is sufficient to
consider this cross-section only).

We call spheres whose equator is the electric ring E-sphere. We call the magnetic
spheres M-spheres. In fig. 1 one can see the vertical magnetic azis (coinciding with
the Z-axis), the first E-sphere, the first M-sphere and the second E-sphere in the given
instant of time. Within E-spheres the total electromagnetic energy conserves because
the energy-flux vector at the surface of this sphere has tangential component only. The
energy transfers along this surface from pole to equator (electric ring) and after a certain
period(®) of time does reverse movement. Within the first E-sphere the energy transfers
from the magnetic azxis to the electric ring and after a certain time returns.

The Poynting vector is zero in every point of the first M-sphere so the energy within
this sphere conserves too. One can see that the energy transfers from the surface of the
first magnetic sphere to the electric rings of the first and the second E-spheres. Analogical
exchange of the energy takes place between next E- and M-spheres.

We once more emphasize that Poynting’s vector field takes opposite direction with
time, due to the existence of the function sin(2wt) in eq. (33).

For more demonstrativeness we adduce here the graphic (fig. 2) of cross-section of
Poynting’s vector field in the plane z = 0.

(5) This period is defined by the function sin(2wt) from eq. (33).
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Fig. 1. — Poynting’s vector field distribution for given instant of time in the plane x = 0, Y-axis
is the abscissa and Z-axis is the ordinate. Here ¢ = 1,w = 1.

At last we adduce here the common graphic (fig. 3) of cross-section (z = 0) of the
surfaces where the energy density is constant and first M-sphere, first and second E-
spheres.

We emphasize that these surfaces do not deform, do not displace and do not rotate
with time in vacuum.

4. — Discussion

Thus, we obtained a stationary-free electromagnetic field which can be consequence
of some interference processes. Why one can speak here about interference? Actually, we
see that in this electromagnetic formation, surfaces (discontinuous curves in fig. 3) and
points (in Z-axis) where the energy density is constant exist. From this one can surmise
that these surfaces and points are nodes of wave. It is well known also that standing
electromagnetic waves are a result of interference processes.

Of course, the solution of the free Maxwell equations corresponding to these ball-like
electromagnetic formations was obtained for vacuum. But if we call to mind that in air,
the values € = 1, u = 1 we can be practically sure that the solution (25) is valid for air,
taking into account that air does not have free charges and currents. So it is easy to draw
an analogy between our solution and Kapitsa’s hypothesis about the interference nature

of ball lightning [4]. Actually, the electric field of electromagnetic waves which “voyage”
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Fig. 2. — Poynting’s vector field distribution for a given instant of time in the plane z = 0,
X-axis is the abscissa and Y-axis is the ordinate.

within M-spheres and especially the electric field of the aforementioned electric rings
have to ionize the air converting it to plasma. A size of the critical region of ionization is
defined by the radius of the magnetic sphere, in which a density energy is still adequate
for ionizing air. This ultimate magnetic sphere in turn plays the role of a magnetic trap
for plasma confinement. One can indeed see from eq. (27) that the energy density within
the magnetic spheres decreases as 1/r2. It means that at a certain distance the energy
density is less than the critical value which is necessary to ionize the air. This condition
has to define the radius of the ultimate magnetic sphere within which conditions of the
ionization still exist. Taking into account this limited value of the radius of this ultimate
magnetic sphere one can speak about the fireballs.

It goes without saying that it is just our hypothesis, but the analogy between Kapitsa’s
idea and our ball-like solutions doubtless takes place. It should also be stated that other
ball-like stable formations in the radiation field were obtained in the paper “Is there
yet an explanation of ball lightning?” by Arnhoff [5] and in the paper “Ball lightning
as a force-free magnetic knot” by Rafiada et al. [6] (see also [7]). It follows from these
works that the electromagnetic energy contained in a spherical volume, cannot escape
(the energy corresponding to our solutions behaves in the same way). According to [5]
outside of this volume there is only a quasi-electrostatic field, rotating with constant
angular velocity about the axis (in this point our and Arnhoff’s solutions are different).
In turn Rafiada et al. [6,7] proposed ball-like electromagnetic formations as a solution
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Fig. 3. — Cross-section of the surfaces of the constant energy density and first M-sphere and
first E-spheres in the plane z = 0, Y-axis is the abscissa and Z-axis is the ordinate. Here
e=Lw=1

based on the idea of the “electromagnetic knot”, an electromagnetic field in which any
pair of magnetic lines or any pair of electric lines form a link—a pair of linked curves.

Thus the famous hypothesis of the Nobel prizewinner Kapitsa that fireballs (or balls
lightning) are standing electromagnetic waves of unusual configuration as a result of
some interference process from the day of its formulation (in 1955) never (to the present
day) got a theoretical (mathematical) support. One can see that our work first gives a
theoretical support to this hypothesis.

In a subsequent work we are going to research the process of the genesis of these
unusual electromagnetic formations.

And in conclusion we just note that Barut was right when claimed that “Electrody-
namics and the classical theory of fields remain very much alive and continue to be the
source of inspiration for much of the modern research work in new physical theories” [8].

X X X
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APPENDIX

Simple solving of the equation V x a = (w/c)a

In spite of the fact that this equation was already solved in the literature (see, e.g., [2,
3]) we decide to adduce here a different and very simple method of the solution of this
vector equation.

One can make sure that a simple way to obtain a solution of eq. (13) exists, if we
represent the vector a in the spherical system of coordinates as an axial-symmetric vector:

(A1) a=a(r,0)e, +ag(r,0)eq + ay(r,0)e,.

The rotor of a vector in spherical coordinates out of the origin is

e d(raysinf)  O(rag) eg  [d(ar) O(raysinb)
(A.2) Vxa= r? sin § [ 00 e rsinf | Oy or
4 & d(rag)  Oda,
r or 00 |-

Taking into account eq. (13) and comparing (A.1) and (A.2) we obtain the following
system:

( O(aysinf)  wra,sinf

06 N c '
(A.3) d(ray) o Rmap
or c

d(rag) g da,  wray,

\ or 90 ¢

From the system (A.3) one can obtain a differential equation for a, only:

7«8_2(,. )+§ Lg( sin 6) +‘*’2r2
a2V )T 56 |sing 96 e 5" c?

(A4) a, = 0.

If we look for the solution of eq. (A.4) in the form
(A.5) a, = R(r)O(6),

we obtain that these functions have to satisfy the following equations, respectively:

2 2,2
(A.6) r2d(§:2R) 4 (‘*’c; +p> FR=0
and

d 1 d .
(A7) W [m@(e sin 9)} —pO =0,
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where p is an arbitrary constant. If p were zero, the solution for rR in eq. (A.6) would
be Acos - + Bsin - (A and B are constants). Accordingly, in general, we are going to
look for the solution of eq. (A.6) in the form

(A.8) rR = A(r) cos %C + B(r)sin %T;

here A(r) and B(r) are some functions of r. Substituting (A.8) in eq. (A.6) and taking
into account that coefficients of sine and cosine (which have the same argument) must
be equal to zero separately, we obtain system of two ordinary differential equations:

P 2
(A.9) A+ PAr®p 0 ad B'+E2B-Za-o.
r2 c r2 c

Let us propose that A(r) = ur™ and B(r) = vr™, where p, v, m,n are constants and m, n
are integer. Substituting these values in eqs. (A.9) we obtain “characteristic” equations:

2 2
(A.10) pm(m —1) +pu+ 2 onpn—mtl = 0, vnin—1)+pv— —w/,tmrm_"+1 =0,
c c

that one can verify in two following cases only:

)m=0,n=-1,p=—-2,u=—(w/c)v, and taking into account eq. (A.8) we obtain
forv=1

1 n
(A.11) R= —2(—‘icosﬂ+sm“’—’);
r C (& (64

II)ym=-1,n=0,p=-2,v = (w/c)u, and taking into account eq. (A.8) we obtain
for p=1

1 n »
(A.12) R=— (cos L/ cﬁ)
r c c c

So the general soluion of eq. (A.6) for Rr is

(6 r r r C: wr . wr
(A.13) R(r) = —; (—w—cosw—+sin Li)—) +—.§ (cosﬂ+—sin —),
r c c r c c c
where C; and Cy are arbitrary constants. The solution (A.13) can be expressed in the
form

(A.14) R(r) = £ [cos (% - 5) + % sin (%T - 5)] 3

r2

where C and § are arbitrary constants.
Now eq. (A.7) becomes (p = —2)

d 1 d . -
Its general solution is
(A.16) ©(f) = C3sinf + Cy(cot§ — sin 6 In|csch — cot f)]).
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As a particular case we take the values C4 = 0 (because a corresponding solution has
a singularity in # = (2n + 1)7) and C3 = 1 (by virtue of homogeneity of the equation for

the vector a).
Thus, we can write the solution (A.5) as follows:

a
(A.17) ap(r,8) = —3 sin 0,

where
azcos(ﬂ—é) +ﬂsin(£—5).
c c c

Now, using egs. (A.3), we can find a,(r,0) and ag(r,0):

(A.18) G lr = 2l aplnl) = Hind,
wr3 wr3
where
w?r? wr
Yy=a-— = cos(7——5).

And so, we have found the solution of eq. (13) which in the spherical system of coordinates
is(")

(2
(A.19) a:D{r—(;cose}er—l—D{%sin&}eg+D{§%sin0}e¢.
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