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Abstract
We outline a regular way for solving Maxwell’s equations. We take, as the
starting point, the notion of vector potentials. The rationale for introducing this
notion in electrodynamics is that the set of Maxwell’s equations is seemingly
overdetermined. We demonstrate the existence of two fundamental solutions
to Maxwell’s equations whose linear combinations comprise the whole variety
of classical electromagnetic field configurations.

Keywords: fundamental solutions of Maxwell’s equations, gauge fields, vector
potentials

1. Introduction

In this third paper of a series of papers, initiated by [1, 2], we continue to review the utility of
four-dimensional concepts in classical electrodynamics.

The discussion of [2] made it clear that the law governing the electromagnetic field
behavior is largely ordered by the geometry of Minkowski spacetime 1,3. This law is given
by a system of partial differential equations
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p¶ =l
lm mF j4 , 1( )

*¶ =l
lmF 0, 2( )

known as Maxwell’s equations. Here ¶l stands for ¶ ¶l, and * ºlm lmnr
nrF F1

2
. We use the

Gaussian system of units, and put the speed of light to be 1. Fixing a particular inertial frame
of reference, equations (1) and (2) can be rewritten as

p =E 4 , 3· ( )

p ´ = +
¶
¶t

B j
E

4 , 4( )

 =B 0, 5· ( )

 ´ = -
¶
¶t

E
B

. 6( )

Although the set of differential equations in four-dimensional tensor form, equations (1)–(2),
is mathematically equivalent to the set of differential equations in three-dimensional vector
form, equations (3)–(6), the former is much more elegant than the latter.

We now address the issue of whether the four-dimensional covariant treatment of basic
solutions to Maxwell’s equations is favored over the corresponding three-dimensional vector
treatment, which is adopted in modern textbooks on electrodynamics and used as a common
practice for teaching these solutions at undergraduate level. The aim of this paper is to show
that this is indeed the case. Our main concern is with two questions.

i. Where did the notion of vector potentials come from?
ii. Are there several fundamental solutions to Maxwell’s equations such that their linear

combinations form the whole variety of classical electromagnetic fields distributed over
empty space?

The rationale, or at least a motivation, for introducing vector potentials is that the set of
Maxwell’s equations is seemingly overdetermined. A regular procedure for solving this set of
differential equations is to express the electromagnetic field strength mnF in terms of vector
potentials Aμ.

As to the second question, the answer is positive. In fact, there exist two fundamental
solutions to Maxwell’s equations whereby every electromagnetic field configuration can be
constructed. We will see that the Liénard–Wiechert field and plane wave are acting as
fundamental solutions of this kind in classical electrodynamics.

It will transpire that the four-dimensional covariant framework not only makes the
analysis of the posed questions much easier, but also provides a decisive pedagogical insight
into geometric and physical information which is encoded in Maxwell’s equations.

2. The notion of vector potentials

At first glance the set of Maxwell’s equations, equations (1)–(2), is overdetermined: eight
equations are intended for finding six unknown functions mnF . Matters can be improved by
expressing the field strength mnF in terms of vector potentials mA ,

= ¶ - ¶mn m n n mF A A . 7( )
Recall that mnF is an antisymmetric tensor, so that the antisymmetric combination of two
vectors ¶m and nA on the right of (7) is quite appropriate. With the ansatz (7), the second part
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of Maxwell’s equation, equation (2), is satisfied identically because  ¶ ¶ ºlmnr
l n 0.

Substituting (7) into (1) gives

 p- ¶ ¶ =m m
l

l mA A j4 , 8( )

where = ¶ ¶ = ¶ ¶ - l
l t2 2 2 is the wave operator. We thus come to the set of equations,

equation (8), which has the number of equations equal to the number of the functions sought.
Note that mA is defined in equation (7) up to adding the four-gradient of an arbitrary

smooth scalar function c¶m . Indeed, the field strength mnF is unaffected by the replacement

c ¢ = - ¶m m m mA A A . 9( )
These transformations of mA are called gauge transformations. We thus deal with the entire
equivalence class of vector potentials related to each other by gauge transformations, rather
than a concrete vector function. The term c¶m in (9) is called the gauge mode. These modes
do not contribute to the Lorentz force n

mnqv F , and hence the dynamics of charged particles is
unaffected by them. On the other hand, the current of charged particles mj is not the source of
gauge modes. Indeed, it is clear that gauge modes satisfy equation (8) with the vanishing
right-hand side of this equation, whence it follows that gauge modes are unaffected by mj , and
their evolution is divorced from the evolution of the dynamical degrees of freedom described
by mnF .

This offers a clearer view of how the seemingly overdetermined set of partial differential
equations becomes determined. The net dynamical degrees of freedom are augmented by the
addition of auxiliary degrees of freedom, gauge modes, which equalizes the number of
equations governing this extended field system to the number of field variables.

The corresponding treatment of Maxwell’s equations in three-dimensional vector form,
equations (3)–(6), is not as intelligible. Let us write components of mA in a particular inertial
frame: f=mA A,( ), or, equivalently, f= -mA A,( ). Taking into account the definitions of

the electric field =E Fi i0 and the magnetic induction = -B Fi ijk
jk1

2
which were given in [2]

we obtain from (7)

f= -
¶
¶

- 
t

E
A

, 10( )

=  ´B A. 11( )

It is then possible to verify, by inspection, that equations (10) and (11) provide a solution of
equations (5) and (6). However, if the four-dimensional ansatz (7) was not taken as the
starting point, then the three-dimensional ansatz (10)–(11) is an ingenious mathematical trick
whose discovery is surprising.

The corresponding three-dimensional gauge transformations are

f f f
c

 ¢ = -
¶
¶t

, 12( )

c ¢ = + A A A . 13( )

It is unlikely that equations (10)–(11) and (12)–(13) might help to illuminate the origin
and mathematical nature of f and A. Historically, the ansatz (11) was suggested by W
Thomson who investigated the analogies of electric phenomena with those of elasticity, and
by C Neumann, Weber and Kirchhoff in their studies on the induction of currents [3].
However, while on the subject of modern teaching in gauge field theory (specifically in
electrodynamics) following its inner logic, and not according to its historical development, it
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is apparent that the student should learn of the notion of vector potentials in the four-
dimensional relativistic framework.

Equation (2) can be rearranged to give5

¶ + ¶ + ¶ =l mn n lm m nlF F F 0. 14( )

We call equations (2) and (14) collectively the Bianchi identity. This name comes from the
fact that if we adopt Aμ as the basic variables, then the possibility to express mnF in terms of
Aμ, as shown in equation (7), becomes a synonym for making the left-hand sides of
equations (2) and (14) identitically vanishing.

Equation (8) cannot be solved directly because the differential operator
dL ¶ = - ¶ ¶l

m
l

m m
l( ) has no inverse6.To tackle this problem, we take advantage of the

gauge arbitrariness. We impose a gauge fixing condition on mA , selecting a single repre-
sentative of the equivalence class of vector potentials, to make the differential operator
invertible. For example, if we choose the so-called Lorenz gauge condition

¶ =l
lA 0, 17( )

then (8) becomes the inhomogeneous wave equation

 p=m mA j4 . 18( )

This resolves the problem because the wave operator  is invertible.

3. Fundamental solutions to Maxwell’s equations

It would be difficult if not impossible to find in current texts on classical electrodynamics the
statement that all feasible classical electromagnetic field configurations can proliferate
through composing linear combinations of only two fundamental solutions to Maxwell’s
equations7. We intend to show that two electromagnetic field configurations, known as the
Lienárd–Wiechert field and plane wave, may be regarded as fundamental solutions of
this kind.

It is sufficient to restrict our consideration to mA generated by a single charged particle
moving along a smooth timelike world line mz s( ). We can readily extend this analysis to
cover the case of several charged particles by taking the the sum of all such mA generated by
their respective individual sources.

5 To see this, let us note that * ¶ = ¶l
lr lrmn

l mnF F1

2
is proportional to the sum of terms stemming from the

antisymmetrization of ¶l mnF . Among them, the plus signs have terms which can be represented as cyclic permutations
of indices of ¶l mnF , that is, ¶l mnF , ¶n lmF and ¶m nlF , while the terms of another triplet ¶l nmF , ¶m lnF and ¶n mlF are
assigned the minus sign. However, both triplets actually contain identical terms because = -mn nmF F . It follows that
equations (2) and (14) are equivalent.
6 The expert reader will recognize that l l l lL =det 0 1 2 3 where l0, l1, l2, l3 are eigenvalues of the operator

dL = -l
m

l
m m

lk k k k2( ) , that is, solutions to the eigenvalue problem

lL Y = Yl
m l m, 15a a a ( )

where a runs from 0 to 3 (there is no summation over a in the right-hand side). It is clear from

L =l
m lk k 0 16( ) ( )

that some eigenvalue (associated with the eigenvector Ym proportional to mk ) is zero, hence L =det 0.
7 To illustrate we refer to several popular textbooks [4–8] where this fact went unnoticed.
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Thus, our concern is with finding exact solutions to the equation

 òp d= -m m

-¥

¥
A x q s v s x z s4 d , 194( ) ( ) [ ( )] ( )

in which mA x( ) is the unknown variable, q is the charge of the particle, and =m mv z sd d its
four-velocity. Since the partial differential equation (19) is linear in mA x( ), its solution is
written as the sum of some particular solution of this equation and general solution of the
associated homogeneous equation

 =mA 0. 20( )
What is the most appropriate form of the particular solution to equation (19) for the

description of the classical electromagnetic picture? The commonly accepted point of view is
that the retarded vector potential mAret, called the Liénard–Wiechert potential, is just this
solution. The procedure of derivation of the Liénard–Wiechert potential is outlined in every
textbook. We thus only recall the form of this solution using the condensed four-dimensional
Dirac notations [9]. Let mx be some point outside the world line mz s( ). Define the lightlike
four-vector = -m m mR x z sret( ) drawn from a point mz sret( ) on the world line, where the signal
is emitted, to the point mx , where the signal is received. It is seen from figure 1 that mR is
opposed to a ray of the past light cone with the vertex at mx . Consider the unit vector mv
tangent to the curve mz s( ) at the instant sret and define the scalar

r = a
aR v . 21( )

Since mR is a lightlike vector, the geometric interpretation of ρ is apparent: ρ is the spatial
distance between the field point and the retarded point in the instantaneously comoving
Lorentz frame in which the charge is at rest at the retarded instant sret, as shown in figure 2.

The retarded vector potential due to a single arbitrarily moving charge q is

r
=m

m
A x q

v
. 22ret ( ) ( )

Note that this expression for the retarded vector potential can be directly derived from
that for the Coulomb potential, with the understanding that the retardation condition is met,
see, e.g., [5].

The strength of the Liénard–Wiechert field is readily calculated from (22) with the aid of
simple differentiation rules (these rules can be found in the textbooks [6–8]). The result is8

r
=

-mn
m n n m

F q
R U R U

, 23ret 3
( )

r= - +m
a

a m mU a R v a1 , 24( ) ( )
where =m ma v sd d is the four-acceleration of the charged particle.

It might be well to point out that the four-dimensional description represents the Liénard–
Wiechert field, equations (23)–(24), in a concise and elegant form. In contrast, the conven-
tional three-dimensional vector treatment leads to rather cumbersome expressions

=
-

- - + ´ - ´
q

r
r rE

r v
v r v r r v a1 , 25ret 3

2

( · )
{( )( ) [( ) ]} ( )

8 A diligent student will perform this calculation as a useful exercise.
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=
´

r
B

r E
, 26ret

ret ( )

where r is the radius vector drawn from the point of emission tz ret( ) to the point of
observation x in a particular Lorentz frame.

Let a particle be moving along a straight line = +m m mz s z V s0( ) ( ) , =mV const. Then, in
a Lorentz frame in which the time axis is parallel to mV , we have =m mU V , and
equations (23)–(24) describe the Coulomb field. In a sense this feature remains valid for the
field generated by an arbitrarily moving charge. Indeed, substituting equations (23)–(24) into
the expressions for the electromagnetic field invariants

 = mn
mnF F

1

2
, 27( )

* = mn
mnF F

1

2
28( )

gives

 
r

= - =
q

, 0. 29ret

2

4 ret ( )

Since  = -B E2 2, and  = - E B2 · , this result implies that, whatever smooth world line
is chosen, one can find such a frame of reference (which is peculiar to every point mx ) that

=B 0ret and = q rEret
2∣ ∣ in all points of spacetime, that is, only electric field is observed in

this frame. Thus, there exists a global (noninertial) frame of reference in which the retarded
electromagnetic field generated by a single arbitrarily moving charge, shown in
equations (23)–(24), appears as a pure Coulomb field at each observation point.

Figure 1. Retarded signal at mx , emitted from mz sret( ).

Figure 2. The origin of the invariant retarded variable ρ.
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The Liénard–Wiechert field (23) is determined not only by the field Fret as such but also
by the frame of reference in which Fret is measured. If we are to identify the net degrees of
freedom related to Fret , irrespective of the used frame of reference, we conclude that just the
Coulomb field is responsible for those degrees of freedom.

This inference may seem surprising: any charged particle generates a field of electric
type! However, we are well aware of the fact that not only fields of electric type but also fields
of magnetic type are available in nature. Where do they come from? One can indicate at least
two origins of magnetic fields. First, the superposition principle. It is an easy matter to verify
from equations (23)–(24) that the relations  = 0,  < 0 are in general no longer valid for
electromagnetic fields generated by two or several charges, so that the configurations involved
may well represent fields of magnetic type. Note that the occurrence of pure magnetic fields
due to the circuition of electrons around closed paths suggests a neutral system where electric
fields of moving electrons and immovable nuclei mutually cancel. Second, a pure magnetic
field may also be related to spin and its associated magnetic dipole moment of the charged
particle, which, however, is beyond the scope of the present discussion.

The general solution of the homogeneous wave equation (20) can be written as an
arbitrary superposition of plane waves m k xexp i( · ) with a lightlike propagation vector, mk ,

=k 02 , and the polarization vector m orthogonal to the propagation vector,  =k 0· . Since
our interest here is only with fields distributed over empty space, it is adequate to use a
Fourier-integral expansion, so that the desired solution is

ò a=m mA x k k ke d . 30k xi 4( ) ( ) ( ) ( )·

We thus have established our assertion concerning the existence of two fundamental
solutions to Maxwell’s equations giving rise to the variety of field configurations in classical
electrodynamics, with due reservation of course that all the field configurations in macro-
scopic media were left aside in the present consideration.

4. Discussion and outlook (for the expert reader)

Since the discovery of the Aharonov–Bohm effect9, the quantity mA achieved settled status of
the basic variable for accounting of the electromagnetic field in quantum theory10. Most
current theories in high energy physics and gravity begin with gauge invariance as a first
principle, that is, proceeding from vector potentials as the basic field variables. To illustrate,
we take a glance at the Yang–Mills–Wong theory [13, 14]. The dynamical equations gov-
erning the Yang–Mills field read

p¶ + =m
mn

m mn
nG gf A G j4 , 31a abc

b c
a ( )

where mnGa is the non-Abelian field strength which is expressed in terms of vector potentials

mAb as

= ¶ - ¶ +mn m n n m m nG A A gf A A , 32a a a a
bc

b c ( )

g is the Yang–Mills coupling constant, fabc is the structure constants of the gauge group
involved, and mja is the color charge current of N point particles, each carrying the color

9 This effect would be more properly termed the Ehrenberg–Siday–Aharonov–Bohm effect because it was
discovered by Ehrenberg and Siday 10 years before Aharonov and Bohm [10, 11].
10 Note, however, that this status of vector potentials was challenged in [12]. We will not go into the details of this
controversial issue, and refer the interested reader to the original literature.
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charge QI
a, analogous to the current of N electrically charged point particles,

òå d= -m m

= -¥

¥
j x s Q s v s x z sd . 33a

I

N

I aI I I I I I
1

4( ) ( ) ( ) [ ( )] ( )

Let Ta be the generators of the gauge group. All color variables (the field strength, vector
potentials, color charges, etc) can be written in matrix notation, as exemplified by

=mn mnG T Gi

g a
a . Then equations (31) and (32) become

p=m
mn nD G j, 4 , 34[ ] ( )

= ¶ - ¶ +mn m n n m m nG A A ig A A, . 35[ ] ( )

Here, the square brackets stand for commutators of matrix-valued quantities, and Dμ is the so-
called covariant Yang–Mills derivative whose action on any field f f= Ta

a, transforming
according to the adjoint representation of the gauge group, is given by

f f f= ¶ +m m mD g A , . 36[ ] ( )

Note that for any gauge covariant quantity f,

f f=m n mnD D g G, , . 37[ ] [ ] ( )

By recognizing that mnG is expressed in terms of mA , according to (35), we come to a condition
underlying this relation, the Bianchi identity,

+ + =l mn n lm m nlD G D G D G, , , 0, 38[ ] [ ] [ ] ( )

which can be verified through the use of the Jacobi identity

+ + =l m n n l m m n lD D D D D D D D D, , , , , , 0, 39[ [ ]] [ [ ]] [ [ ]] ( )

combined with equation (37).
Of course if we define the field strength mnGa in terms of vector potentials mAa according to

(35), then there is no need to join the Bianchi identity (38) to the field equation (34) to
complete the dynamics of this theory. Since the gauge-dependent quantities mAa appear in the
Yang–Mills theory from the outset, the set of dynamical equations is no longer over-
determined. The situation with the Bianchi identity in general relativity closely resembles that
in the Yang–Mills theory [15].

We thus see that classical electrodynamics offers a very instructive example of how the
concept of gauge fields and gauge invariance can be introduced in their simplest physical and
mathematical context.

One further feature of classical electrodynamics is its remarkably transparent field con-
figuration arrangement: every field configuration stems from the Coulomb fields and plane
waves. Note, however, that our concern here is with the fundamental aspects, rather than
practical uses, of this arrangement. The Fourier-integral expansion (30) is sound but not
universally convenient. In some instances it would be appropriate to expand the solution of
the homogeneous wave equation (20) in terms of spherical harmonics. For example, a
plausible guess about the nature of ball lighting is that the essential prerequisite to ball
lighting formation is a steady-state field generated by converging and diverging axially
symmetric microwaves [16, 17]. A self-dual solution to free Maxwell’s equations [18] may be
suitable to the analysis of standing wave configurations in this as yet unsolved problem.

By contrast, exact solutions in the classical Yang–Mills theory and general relativity pose
many problems. The dynamical equations of these theories are nonlinear, so that any
superposition of solutions appears to be something other than a new solution. Solutions to the
classical Yang–Mills equations, known by the end of the 1970s, are reviewed in [19]. Exact
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solutions of quantum Yang–Mills theory are altogether out of the question. This task is
among one of the seven problems recorded by the Clay Mathematics Institute as the Mil-
lennium Prize Problems—the most difficult issues with which mathematicians were strug-
gling at the turn of the second millennium [20]. A large body of exact solutions in general
relativity are systematized in the catalog [21].

Are there exact solutions of these theories similar to the Liénard–Wiechert solution (24)?
Such solutions to the Yang–Mills equations were indeed found in [22] (for a review see [23]),
and rediscovered in [24]. These solutions fall into two classes. One of them contains solutions
describing Yang–Mills fields of electric type, whose field invariants  and  built out of mnGa

are  = 0 and  < 0, while the other contains solutions describing fields of magnetic type
specified by  = 0 and  > 0. These two types of solutions are very likely related to two
phases of the Yang–Mills vacuum.

As to general relativity, exact solutions describing the gravitational field generated by an
arbitrarily moving massive particle, similar to the Liénard–Wiechert solution, still remain
unknown.

The non-Abelian analogues of electromagnetic plane waves, that is, exact solutions to
equation (34) with =mj 0 obeying the requirements that the energy density is bounded
throughout spacetime, the direction of the Poynting vector is constant, and the magnitude of
the Poynting vector is equal to the energy density, were found in [25]. However, such waves
moving in different directions cannot be superposed, and hence, they are of no practical
importance.
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