Please use this identifier to cite or link to this item:
http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1456
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | 241916 | es_ES |
dc.contributor | 172896 | es_ES |
dc.contributor | 172879 | es_ES |
dc.contributor | 123645 | es_ES |
dc.contributor | 6207 | es_ES |
dc.contributor | 268446 | es_ES |
dc.contributor | 49237 | es_ES |
dc.contributor | 200970 | es_ES |
dc.contributor.other | https://orcid.org/0000-0002-7081-9084 | es_ES |
dc.contributor.other | https://orcid.org/0000-0003-2545-4116 | - |
dc.coverage.spatial | Global | es_ES |
dc.creator | Martinez Blanco, María del Rosario | - |
dc.creator | Ornelas Vargas, Gerardo | - |
dc.creator | Castañeda Miranda, Celina Lizeth | - |
dc.creator | Solís Sánchez, Luis Octavio | - |
dc.creator | Castañeda Miranda, Rodrígo | - |
dc.creator | Vega Carrillo, Héctor René | - |
dc.creator | Celaya Padilla, José María | - |
dc.creator | Garza Veloz, Idalia | - |
dc.creator | Martínez Fierro, Margarita de la Luz | - |
dc.creator | Ortíz Rodríguez, José Manuel | - |
dc.date.accessioned | 2020-03-24T20:21:12Z | - |
dc.date.available | 2020-03-24T20:21:12Z | - |
dc.date.issued | 2016-04-30 | - |
dc.identifier | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.issn | 0969-8043 | es_ES |
dc.identifier.uri | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1456 | - |
dc.identifier.uri | https://doi.org/10.48779/5zy6-dr62 | es_ES |
dc.description.abstract | The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | http://dx.doi.org/10.1016/j.apradiso.2016.04.029 | es_ES |
dc.relation.uri | generalPublic | es_ES |
dc.rights | Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/us/ | * |
dc.source | Applied Radiation and Isotopes Vol. 117, pp. 8-14. | es_ES |
dc.subject.classification | INGENIERIA Y TECNOLOGIA [7] | es_ES |
dc.subject.other | Artificial neural networks | es_ES |
dc.subject.other | Neutron spectrometry | es_ES |
dc.subject.other | Bonner spheres | es_ES |
dc.subject.other | Unfolding | es_ES |
dc.subject.other | GRNN architecture | es_ES |
dc.title | A neutron spectrum unfolding code based on generalized regression artificial neural networks | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
Appears in Collections: | *Documentos Académicos*-- Doc. en Ing. y Tec. Aplicada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A neutron spectrum unfolding code based.pdf | 1,17 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License