Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1457
Full metadata record
DC FieldValueLanguage
dc.contributor268446es_ES
dc.contributor49237es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-9498-6602-
dc.contributor.otherhttps://orcid.org/0000-0002-7635-4687-
dc.coverage.spatialGlobales_ES
dc.creatorCelaya Padilla, José María-
dc.creatorGuzmán Valdivia, César Humberto-
dc.creatorGalván Tejada, Jorge Issac-
dc.creatorGalván Tejada, Carlos Eric-
dc.creatorGamboa Rosales, Hamurabi-
dc.creatorDelgado Contreras, Juan Rubén-
dc.creatorMartinez Torteya, Antonio-
dc.creatorOlivera Reyna, Roberto-
dc.creatorManjarrez Sánchez, Jorge Roberto-
dc.creatorMartínez Ruíz, Francisco Javier-
dc.creatorGarza Veloz, Idalia-
dc.creatorMartínez Fierro, Margarita de la Luz-
dc.creatorTraviño, Victor-
dc.creatorTamez Peña, José Gerardo-
dc.date.accessioned2020-03-24T20:26:23Z-
dc.date.available2020-03-24T20:26:23Z-
dc.date.issued2017-10-04-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.isbn978-953-51-3558-6es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1457-
dc.description.abstractBreast cancer is one of the global leading causes of death among women, and an early detection is of uttermost importance to reduce mortality rates. Screening mammograms, in which radiologists rely only on their eyesight, are one of the most used early detection methods. However, characteristics, such as the asymmetry between breasts, a feature that could be very difficult to visually quantize, is key to breast cancer detection. Due to the highly heterogeneous and deformable structure of the breast itself, incorporating asymmetry measurements into an automated detection system is still a challenge. In this study, we proposed the use of a bilateral registration algorithm as an effective way to automatically measure mirror asymmetry. Furthermore, this information was fed to a machine learning algorithm to improve the accuracy of the model. In this study, 449 subjects (197 with calcifications, 207 with masses, and 45 healthy subjects) from a public database were used to train and evaluate the proposed methodology. Using this procedure, we were able to independently identify subjects with calcifications (accuracy = 0.825, AUC = 0.882) and masses (accuracy = 0.698, AUC = 0.807) from healthy subjects.es_ES
dc.language.isoenges_ES
dc.publisherIntechOpenes_ES
dc.relationhttp://dx.doi.org/10.5772/intechopen.69526es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceNew Perspectives in Breast Imaging; Arshad M. Malikcoordinador. Reino Unido. p. 109-124es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherbreast canceres_ES
dc.subject.otherasymmetryes_ES
dc.subject.otherbilateral registrationes_ES
dc.subject.otherCADes_ES
dc.titleIncorporating Breast Asymmetry Studies into CADx Systemses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
Appears in Collections:*Documentos Académicos*-- Doc. en Ing. y Tec. Aplicada

Files in This Item:
File Description SizeFormat 
Incorporating Breast Asymmetry Studies into CADx.pdf3,4 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons