Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1602
Full metadata record
DC FieldValueLanguage
dc.contributor299983es_ES
dc.contributor49390-
dc.contributor267233-
dc.contributor.otherhttps://orcid.org/0000-0003-1519-7718-
dc.contributor.otherhttps://orcid.org/0000-0002-9498-6602-
dc.contributor.other0000-0002-9498-6602-
dc.coverage.spatialGlobales_ES
dc.creatorMaeda Gutiérrez, Valeria-
dc.creatorGalván Tejada, Carlos-
dc.creatorZanella Calzada, Laura Alejandra-
dc.creatorCelaya Padilla, José María-
dc.creatorGalván Tejada, Jorge I.-
dc.creatorGamboa Rosales, Hamurabi-
dc.creatorLuna García, Huizilopoztli-
dc.creatorMagallanes Quintanar, Rafael-
dc.creatorGuerrero Méndez, Carlos-
dc.creatorOlvera Olvera, Carlos Alberto-
dc.date.accessioned2020-04-13T18:56:55Z-
dc.date.available2020-04-13T18:56:55Z-
dc.date.issued2020-02-12-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn2076-3417es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1602-
dc.identifier.urihttps://doi.org/10.48779/q6dv-qt87-
dc.description.abstractTomato plants are highly affected by diverse diseases. A timely and accurate diagnosis plays an important role to prevent the quality of crops. Recently, deep learning (DL), specifically convolutional neural networks (CNNs), have achieved extraordinary results in many applications, including the classification of plant diseases. This work focused on fine-tuning based on the comparison of the state-of-the-art architectures: AlexNet, GoogleNet, Inception V3, Residual Network (ResNet) 18, and ResNet 50. An evaluation of the comparison was finally performed. The dataset used for the experiments is contained by nine different classes of tomato diseases and a healthy class from PlantVillage. The models were evaluated through a multiclass statistical analysis based on accuracy, precision, sensitivity, specificity, F-Score, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results present significant values obtained by the GoogleNet technique, with 99.72% of AUC and 99.12% of sensitivity. It is possible to conclude that this significantly success rate makes the GoogleNet model a useful tool for farmers in helping to identify and protect tomatoes from the diseases mentioned.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationhttp://dx.doi.org/10.3390/app10041245es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceApplied Sciences, Vol. 10, No 4, 2019, 1245es_ES
dc.subject.classificationCIENCIAS AGROPECUARIAS Y BIOTECNOLOGIA [6]es_ES
dc.subject.othertomato plant diseaseses_ES
dc.subject.otherdeep learninges_ES
dc.subject.otheronvolutional neural networkses_ES
dc.subject.otherclassificationes_ES
dc.titleComparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseaseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias de la Ing.

Files in This Item:
File Description SizeFormat 
2020 Maeda-Gutierrez.pdfComparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseases1,52 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons