Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1696
Full metadata record
DC FieldValueLanguage
dc.contributor865291es_ES
dc.contributor.advisorCarlos Alberto Olvera Olveraes_ES
dc.contributor.advisorCarlos E. Galván Tejadaes_ES
dc.coverage.spatialGlobales_ES
dc.creatorMaeda Gutiérrez, Valeria-
dc.date.accessioned2020-04-16T00:13:45Z-
dc.date.available2020-04-16T00:13:45Z-
dc.date.issued2019-09-13-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1696-
dc.description.abstractLas plantas de tomate son constantemente afectadas por diversas enfermedades. Un diagnóstico oportuno y preciso es de suma importancia para prevenir la calidad de los cultivos. Recientemente, el Aprendizaje Profundo, específicamente las Redes Neuronales Convolucionales han logrado resultados extraordinarios en muchos campos, incluyendo la clasificación de enfermedades de plantas. Este trabajo se centra en la técnica de “ajuste fino” basado en la comparación de diferentes arquitecturas de Redes Neuronales Convolucionales tales como: AlexNet, GoogleNet, Inception V3, ResNet 18 y ResNet 50. Finalmente, se realizó la evaluación de la comparación. El conjunto de datos utilizado para los experimentos fue compuesto por nueve clases con enfermedades y una clase sana, extraídas del conjunto de datos PlantVillage. Los modelos se evaluaron mediante un análisis estadístico multiclase con base en la exactitud, precisión, sensibilidad, especificidad, F-score, ´area bajo la curva y la curva de característica operativa del receptor. Los resultados presentaron valores significativos obtenidos por GoogleNet con 99.72% de AUC y 99.12% de sensibilidad. Es posible concluir que esta tasa de éxito significativo hace que el modelo de GoogleNet sea una herramienta ´util para los agricultores, ayudando así a identificar y proteger los tomates de enfermedades.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Autónoma de Zacatecases_ES
dc.relation.isbasedonMaestro en Ciencias de la Ingenieríaes_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.classificationCIENCIAS AGROPECUARIAS Y BIOTECNOLOGIA [6]es_ES
dc.subject.otherEnfermedades en tomatees_ES
dc.subject.otherAprendizaje Profundoes_ES
dc.subject.otherRedes Neuronales Convolucionaleses_ES
dc.subject.otherClasificaciónes_ES
dc.titleComparación de arquitecturas de redes neuronales convolucionales para la clasificación de enfermedades en tomatees_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
Appears in Collections:*Tesis*-- M. en Ciencias de la Ing.

Files in This Item:
File Description SizeFormat 
2019-09 VALERIA MAEDA GTZ.pdf2019 Tesis Valeria Maeda1,54 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons