Please use this identifier to cite or link to this item:
http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2292
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | 31249 | es_ES |
dc.contributor.other | https://orcid.org/0000-0002-7337-8974 | - |
dc.coverage.spatial | Global | es_ES |
dc.creator | De la Rosa Vargas, José Ismael | - |
dc.creator | Gutiérrez, Osvaldo | - |
dc.creator | Villa Hernández, Jesús | - |
dc.creator | Moreno, Gamaliel | - |
dc.creator | González, Efrén | - |
dc.creator | Alaniz, Daniel | - |
dc.date.accessioned | 2021-04-15T18:06:33Z | - |
dc.date.available | 2021-04-15T18:06:33Z | - |
dc.date.issued | 2021-01-14 | - |
dc.identifier | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.issn | 1380-7501 | es_ES |
dc.identifier.issn | 1573-7721 | es_ES |
dc.identifier.uri | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2292 | - |
dc.identifier.uri | https://doi.org/10.48779/8n2s-fh58 | - |
dc.description.abstract | In this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Markov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non Gaussian or unknown, so it should be approximated by an estimated version, and for this, it is used the classical non-parametric or kernel density estimation. This two strategies together lead us to the definition of a new maximum a posteriori (MAP) approach based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were conducted for different kind of images degraded with impulsive noise and other non-Gaussian distributions, where the segmentation results are very satisfactory comparing them with respect to recent robust approaches based on the fuzzy c-means (FCM) segmentation. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation | https://doi.org/10.1007/s11042-020-09999-9 | es_ES |
dc.relation.uri | generalPublic | es_ES |
dc.subject.classification | INGENIERIA Y TECNOLOGIA [7] | es_ES |
dc.subject.other | Bayesian estimation | es_ES |
dc.subject.other | Markov random fields | es_ES |
dc.subject.other | Image segmentation | es_ES |
dc.subject.other | Non parametric estimators | es_ES |
dc.subject.other | Estimation | es_ES |
dc.title | Entropy estimation for robust image segmentation in presence of non Gaussian noise | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
Appears in Collections: | *Documentos Académicos*-- Doc. en Ciencias de la Ing. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
34_DelaRosa MTAP P1 2021.pdf | DelaRosa MTAP 2021 | 947,64 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.