Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2395
Title: Effect of the hydrostatic pressure and shell’s Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlGaAs quantum dots
Authors: Rodríguez Magdaleno, K.A.
Mora Ramos, Miguel Eduardo
Pérez Álvarez, R.
Martínez Orozco, Juan Carlos
Issue Date: Jan-2020
Publisher: Elsevier
Abstract: In this paper we theoretically investigate the role of hydrostatic pressure by analyzing its influence on potential barrier’s height in GaAs/AlGaAs core/shell spherical quantum dots. The values of hydrostatic pressure considered here are always below the crossover. In addition, we take into account the barrier shell’s size effects and the barrier’s aluminum concentration, looking for a description of the features of the intraband optical absorption coefficient in the system. The electronic structure is calculated within the effective mass approximation. From the numerical point of view the hybrid matrix method was implemented to avoid numerical instability issues that appears in the conventional transfer matrix method. The main intersubband optical transition is considered to take place between the 1 and 1 computed electronic states. The results show that the absorption coefficient undergoes first a red-shift and later a more pronounced blue-shift, depending on the AlGaAs barrier width (). The absorption coefficient experiences a blue-shift as the barrier’s aluminum concentration increases, and it is non monotonically red-shifted as the hydrostatic pressure augments, due to the barrier’s height pressure dependency. For the chosen system parameters, the absorption coefficient resonant peak lies within the range of 20 to 30 meV, that corresponds to the THz frequency region. Accordingly, this system can be proposed as a building block for photodetectors in the THz electromagnetic spectrum region.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2395
https://doi.org/10.48779/6vmr-e928
ISSN: 1369-8001
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- Doc. en Ciencias Básicas

Files in This Item:
File Description SizeFormat 
8Effect.jpg716,44 kBJPEGView/Open


This item is licensed under a Creative Commons License Creative Commons