Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2490
Title: Independence and matching number for some token graphs
Authors: de Alba, Hernán
Carballosa, Walter
Leaños, Jesús
Rivera Martínez, Luis Manuel
Issue Date: 2020
Publisher: Combinatorial Mathematics Society of Australasia (CMSA) by The University of Queensland
Abstract: Let G be a graph of order n and let k ∈ {1, . . . , n−1}. The k-token graph Fk(G) of G is the graph whose vertices are the k-subsets of V (G), where two vertices are adjacent in Fk(G) whenever their symmetric difference is an edge of G. We study the independence and matching numbers of Fk(G). We present a tight lower bound for the matching number of Fk(G) for the case in which G has either a perfect matching or an almost perfect matching. Also, we estimate the independence number for bipartite ktoken graphs, and determine the exact value for some graphs.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2490
ISSN: 1034-4942
2202-3518
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- Doc. en Ciencias Básicas

Files in This Item:
File Description SizeFormat 
Independence and matching numbers token_sellos.pdfArtículo publicado198,92 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons