Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2571
Full metadata record
DC FieldValueLanguage
dc.contributor206747es_ES
dc.contributor5505es_ES
dc.coverage.spatialGlobales_ES
dc.creatorHernández, Hiram-
dc.creatorDurón Torres, Sergio Miguel-
dc.creatorEsquivel, Karen-
dc.creatorGuzmán, C.-
dc.date.accessioned2021-06-08T14:20:42Z-
dc.date.available2021-06-08T14:20:42Z-
dc.date.issued2016-10-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.isbn978-3-319-31693-2es_ES
dc.identifier.isbn978-3-319-31694-9es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2571-
dc.description.abstractPt–TiO2 and Au–TiO2 photocatalysts have been synthetized by a microwave assisted sol-gel method and characterized by means of X-ray diffraction (XRD) techniques and UV-Vis diffuse reflectance spectroscopy. Particle sizes have been determined by means of Scherrer equation. Depending on the weight percentage of dopant, some changes in the band gap energy can be observed. X-ray diffractions patterns were recorded to study the formation of TiO2 crystalline species. The diffraction peaks detected after the calcination process indicate the presence of the crystalline anatase phase and no presence of rutile phase was observed. For the Pt–TiO2 sample, the peaks detected in 2θ (39.4∘, 45.9∘, and 67∘) indicate the presence of particles of metallic platinum. For the Au–TiO2 sample, the peaks detected in 2θ (38∘, 44.2∘, 64.4∘, and 77.2∘) indicate the presence of particles of metallic gold. The Pt-loaded samples have a crystal size slightly smaller than the Au-loaded samples, from 3.09 to 4.74 nm. UV-Vis DSR technique was used to study the influence of metal load and type. The band gap decreases according to the metal load; it shows that at higher metal load (5 %) the band gap changes from 3.2 eV (pure TiO2) to 2.98 eV and 3.04 eV for the samples loaded with gold and platinum, respectively. For the Pt–TiO2 sample, the band gap varies from 3.04 eV (5 wt.%) to 3.2 eV (0.1 wt.%), the same behavior is found on the Au-loaded samples, with a band gap energy variation from 2.98 eV (5 wt.%) to 3.21 eV (0.01 wt.%).es_ES
dc.language.isospaes_ES
dc.publisherSpringeres_ES
dc.relationhttps://link.springer.com/chapter/10.1007%2F978-3-319-31694-9_15es_ES
dc.relation.ispartofhttps://doi.org/10.1007/978-3-319-31694-9_15es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceérez Campos R., Contreras Cuevas A., Esparza Muñoz R. (eds) Characterization of Metals and Alloys. Springer, Chames_ES
dc.subject.classificationBIOLOGIA Y QUIMICA [2]es_ES
dc.subject.otherTitanium dioxidees_ES
dc.subject.otherPhotocatalysises_ES
dc.subject.otherPt-TiO2es_ES
dc.subject.otherAu-TiO2es_ES
dc.subject.otherX-ray diffractiones_ES
dc.titleMicrowave Assisted Sol-Gel Synthesis and Characterization of M–TiO2 (MDPt, Au) Photocatalystses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
Microwave Assisted Sol-Gel Synthesis.pdf474 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons