Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2573
Full metadata record
DC FieldValueLanguage
dc.contributor20533es_ES
dc.coverage.spatialGlobales_ES
dc.creatorLugo Vega, Cristina S.-
dc.creatorSerrano Rosales, Benito-
dc.creatorde Lasa, Hugo-
dc.date.accessioned2021-06-08T16:42:58Z-
dc.date.available2021-06-08T16:42:58Z-
dc.date.issued2016-12-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0009-2509es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2573-
dc.description.abstractEfficiencies in photocatalytic reactors for air treatment have to be established on the basis of Quantum Yields (QY) and Photochemical Thermodynamic Efficiency Factors (PTEFs) using rigorous methods. This involves the evaluation of absorbed photons on the TiO2 using macroscopic balances. These balances have to account for the incident, the reflected and the transmitted radiation. Moreover, hydroxyl radical formation enthalpy is required for PTEF calculations. This proposed methodology is illustrated in the present study using a spray immobilized photocatalyst in a Photo-CREC-Air unit. The operation of this unit with acetaldehyde model compounds provides high and promising maximum QYs of 124%. These experimentally measured QYs are close to the 133% QY anti cipated theoretical limit. Regarding maximum PTEFs, they were 24%, for acetaldehyde, showing a high degree of photonic energy utilization. Results obtained also allow one to establish the energy required for reacting hydroxyl radical formation, key species for converting organic molecules in photocatalysis. These energy demands affect photoconversion rates and efficiency factors, as observed for acetone and acetaldehyde. Results obtained also demonstrate the special value of experimentally established macroscopic balances. Macroscopic balances allow decoupling photocatalyst efficiency and photoreactor efficiency. This approach is critical to clarify key engineering issues for scaling up photocatalytic reactors.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationhttps://www.sciencedirect.com/science/article/pii/S0009250916304742es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceChemical Engineering Science Vol 156, pp. 77-88es_ES
dc.subject.classificationBIOLOGIA Y QUIMICA [2]es_ES
dc.subject.otherAir treatmentes_ES
dc.subject.otherPhotocatalysises_ES
dc.subject.otherPhotoreactor designes_ES
dc.subject.otherRadiation balancees_ES
dc.subject.otherQuantum Yieldses_ES
dc.subject.otherPhotonic efficiencyes_ES
dc.titleEnergy efficiency limits in Photo-CREC-Air photocatalytic reactorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
Energy efficiency limits in Photo-CREC-Air photocatalytic reactors.pdf263,42 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons