Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2591
Title: Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt
Authors: Guayaquil Sosa, Jesús Fabricio
Serrano Rosales, Benito
Valadés Pelayo, Patricio Javier
de Lasa, Hugo
Issue Date: 2017
Publisher: Elsevier
Abstract: A series of mesoporous TiO2 (meso-TiO2) were synthesized using the sol-gel technique. A Pluronic F127 triblock-copolymer, a structure-directing agent, was incorporated as a soft template into the sol-gel. In addition, and during a separate synthesis, the sol-gel was doped with a Pt precursor. Semiconductors were prepared with 1.00 wt.%, 2.50 wt.%, 5.00 wt.% Pt nominal loadings, respectively. They were calcined at 500 ◦C and 550 ◦C following synthesis. Morphological and structural properties were studied by: a) X-ray diffraction, b) UV–vis spectrophotometry, c) N2 adsorption-desorption (BET, BJH), and d) X-ray photoelectron spectroscopy (XPS). Optical band gap values for meso-TiO2 and Pt-meso-TiO2 were cal- culated by Kubelka-Munk (K-M) function coupled with Tauc plot methodology. It was observed that the prepared semiconductors displayed pore sizes in the 10–40 nm range with bimodal distributions. Their photocatalytic activity forhydrogenproductionvia water splitting was established ina Photo-CRECWater- II reactor under near-UV light irradiation. The aqueous solution contained 2% v/v ethanol, employed as a renewable organic scavenger. The prepared semiconductors showed that the mesoporous 2.50 wt.% Pt-TiO2 has the highest photoactivity for hydrogen generation. This suggests the important role played by the loading of platinum as a TiO2 dopant, reducing the optical band gap, increasing electron storage and diminishing, as a result, electron-hole recombination. The measured Quantum Yield (QY), obtained using a rigorous approach, was established for the mesoporous 2.50 wt.% Pt-TiO2 at a promising level of 22.6%.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2591
ISSN: 0926-3373
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
SNI-FabricioPaperOne-1.pdf129,66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons