Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/620
Full metadata record
DC FieldValueLanguage
dc.contributor39945es_ES
dc.contributor.otherhttps://orcid.org/0000-0003-0087-8991-
dc.creatorMolina Valdovinos, Sergio-
dc.creatorMartínez Rivera, Freddyson J.-
dc.creatorMoreno Cabrera, Nadia E.-
dc.creatorRodríguez Vargas, Isaac-
dc.date.accessioned2018-08-08T16:39:25Z-
dc.date.available2018-08-08T16:39:25Z-
dc.date.issued2018-07-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn1386-9477es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.11845/620-
dc.identifier.urihttps://doi.org/10.48779/y325-yb04-
dc.description.abstractLow-dimensional thermoelectricity is a key concept in modern thermoelectricity. This concept refers to the possibility to improve thermoelectric performance through redistribution of the density of states by reducing the dimensionality of thermoelectric devices. Among the most successful low-dimensional structures we can find superlattices of quantum wells, wires and dots. In this work, we show that this concept can be extended to cutting-edge materials like graphene. In specific, we carry out a systematic assessment of the thermoelectric properties of quantum well gated graphene superlattices. In particular, we find giant values for the Seebeck coefficient and the power factor by redistributing the density of states through the modulation of the fundamental parameters of the graphene superlattice. Even more important, these giant values can be further improved by choosing appropriately the angle of incidence of Dirac electrons, the number of superlattice periods, the width of the superlattice unit cell as well as the height of the barriers. We also find that the power factor presents a series of giant peaks, clustered in twin fashion, associated to the oscillating nature of the conductance. Finally, we consider that low-dimensional thermoelectricity in graphene and related 2D materials is promising and constitutes a possible route to push forward this exciting field.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationhttps://www.sciencedirect.com/science/article/pii/S1386947717316053?via%3Dihub#!es_ES
dc.relation.ispartofhttps://reader.elsevier.com/reader/sd/9F58CDAC2097876809F9D6B28542B90EC7E30C11777F0D7CE96B5D5724AD9B3C290263550020AA367141CEC6419F45FEes_ES
dc.relation.isreferencedbyGlobales_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourcePhysica E., Volume 101, July 2018, Pages 188-196es_ES
dc.subject.classificationCIENCIAS FISICO MATEMATICAS Y CIENCIAS DE LA TIERRA [1]es_ES
dc.subject.otherThermoelectricityes_ES
dc.subject.otherGraphene superlatticeses_ES
dc.subject.otherSeebeck coefficientes_ES
dc.subject.otherBallistic transportes_ES
dc.titleLow-dimensional thermoelectricity in graphene: The case of gated graphene superlatticeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- UA Física

Files in This Item:
File Description SizeFormat 
1-s2.0-S1386947717316053-main.pdf1,06 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons