Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/782
Full metadata record
DC FieldValueLanguage
dc.contributor6207es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7081-9084es_ES
dc.coverage.spatialGlobales_ES
dc.creatorOrtíz Rodríguez, José Manuel-
dc.creatorMartínez Blanco, María del Rosario-
dc.creatorVega Carrillo, Héctor René-
dc.date.accessioned2019-03-15T15:04:52Z-
dc.date.available2019-03-15T15:04:52Z-
dc.date.issued2010-07-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.urihttp://localhost/xmlui/handle/20.500.11845/782-
dc.identifier.urihttps://doi.org/10.48779/v5tr-9k63es_ES
dc.description.abstractArtificial Neural Networks (ANN), are highly simplified models of the brain processes (Graupe, 2007; Kasabov, 1998). AnANNis a biologically inspired computational model which consists of a large number of simple processing elements called neurons, units, cells, or nodes which are interconnected and operate in parallel (Galushkin, 2007; Lakhmi & Fanelli, 2000). Each neuron is connected to other neurons by means of directed communication links, which constitute the neuronal structure, each with an associated weight (Dreyfus, 2005). The weights represent information being used by the net to solve a problem. Figure 1 shows an abbreviated notation for an individual artificial neuron, which is used in schemes of multiple neurons (Beale et al., 1992). Here the input p, a vector of R input elements, is represented by the solid dark vertical bar at the left. The dimensions of p are shown below the symbol p in the figure as Rx1. These inputs post multiply the single-row, R − column matrix W. A constant 1 enters the neuron as an input and is multiplied by a bias b. The net input to the transfer function f is n, the sum of the bias b and the product Wp. This sum is passed to the transfer function f to get the neuron’s output a.es_ES
dc.language.isospaes_ES
dc.publisherIntechOpenes_ES
dc.relationhttps://www.intechopen.com/books/artificial-neural-networks-application/evolutionary-artificial-neural-networks-in-neutron-spectrometryes_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceArtificial Neural Networks, Coord. Chi Leung Patrick Hui, julio 2010es_ES
dc.subject.classificationCIENCIAS FISICO MATEMATICAS Y CIENCIAS DE LA TIERRA [1]es_ES
dc.subject.otherArtificial Neural Networks (ANN)es_ES
dc.subject.othercomputational modeles_ES
dc.subject.otherneurones_ES
dc.titleEvolutionary Artificial Neural Networks in Neutron Spectrometryes_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
Appears in Collections:*Documentos Académicos*-- UA Ciencias Nucleares

Files in This Item:
File Description SizeFormat 
Evolutionary artificial2.pdf1,41 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons