Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1654
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorFleury, Gilles-
dc.date.accessioned2020-04-14T19:58:34Z-
dc.date.available2020-04-14T19:58:34Z-
dc.date.issued2006-06-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0018-9456es_ES
dc.identifier.issn1557-9662es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1654-
dc.identifier.urihttps://doi.org/10.48779/98et-sw82-
dc.description.abstractIn this paper, a new approach for the statistical characterization of a measurand is presented. A description of how different bootstrap techniques can be applied in practice to estimate successfully a measurand probability density function (pdf) is given. When the direct observation of a quantity of interest is practically impossible such as in nondestructive testing, it is necessary to estimate such quantity, which is also called measurand. The statistical characterization of any estimator is important, because all the uncertainty features can be accessible to qualify such estimator. On the other hand, most of the time, the large-scale repetition of an experiment is not economically feasible, so that the Monte Carlo methods cannot be used directly for uncertainty characterization.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Instrumentation and Measurement Societyes_ES
dc.relationDOI: 10.1109/TIM.2006.873779es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceTransaction on Instrumentation and Measurement, Vol. 55, No. 3, junio 2006, pp. 820-827es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherBootstrapes_ES
dc.subject.otherindirect measurementes_ES
dc.subject.otherMonte Carlo simulationes_ES
dc.subject.othernonlinear regressiones_ES
dc.titleBootstrap Methods for a Measurement Estimation Problemes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
4_DelaRosa IEEETIM P1 2006.pdfDelaRosa IEEETIM 2006B329,05 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons