Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1676
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor20608-
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.contributor.otherhttps://orcid.org/0000-0002-8060-6170-
dc.coverage.spatialGlobales_ES
dc.creatorGutiérrez, Osvaldo-
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorVilla Hernández, José de Jesús-
dc.creatorGonzález Ramírez, Efrén-
dc.creatorEscalante, Nivia-
dc.date.accessioned2020-04-15T17:53:49Z-
dc.date.available2020-04-15T17:53:49Z-
dc.date.issued2012-03-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn1094-4087es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1676-
dc.identifier.urihttps://doi.org/10.48779/w786-r594-
dc.description.abstractIn this work, a novel model of Markov Random Field (MRF) is introduced. Such a model is based on a proposed Semi-Huber potential function and it is applied successfully to image segmentation in presence of noise. The main difference with respect to other half-quadratic models that have been taken as a reference is, that the number of parameters to be tuned in the proposed model is smaller and simpler. The idea is then, to choose adequate parameter values heuristically for a good segmentation of the image. In that sense, some experimental results show that the proposed model allows an easier parameter adjustment with reasonable computation times.es_ES
dc.language.isoenges_ES
dc.publisherOsa Publishinges_ES
dc.relationhttps://doi.org/10.1364/OE.20.006542es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceOptics Express, Vol. 20, No. 6, marzo de 2012, pp. 6542-6554es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherImage processinges_ES
dc.subject.otherDigital image processinges_ES
dc.subject.otherMarkov random fieldses_ES
dc.titleSemi-Huber potential function for image segmentationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
11_Gutierrez_Delarosa OptExpress 2012.pdfGutierrez_Delarosa OptExpress 20121,03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons