Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1713
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.other0000-0002-7337-8974es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.contributor.otherhttps://orcid.org/0000-0002-8060-6170-
dc.coverage.spatialGlobales_ES
dc.creatorBecerra, Aldonso-
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorGonzález Ramírez, Efrén-
dc.date.accessioned2020-04-16T19:09:17Z-
dc.date.available2020-04-16T19:09:17Z-
dc.date.issued2018-08-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn1380-7501es_ES
dc.identifier.issn1573-7721es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1713-
dc.identifier.urihttps://doi.org/10.48779/2d22-9s79-
dc.description.abstractThe aim of this paper is to illustrate an overview of the automatic speech recognition (ASR) module in a spoken dialog system and how it has evolved from the conventional GMM-HMM (Gaussian mixture model - hidden Markov model) architecture toward the recent nonlinear DNN-HMM (deep neural network) scheme. GMMs have dominated for a long time the baseline of speech recognition, but in the past years with the resurgence of artificial neural networks (ANNs), the former models have been surpassed in most recognition tasks. An outstanding consideration for ANNs-based acoustic model is the fact that their weights can be adjusted in two training steps: i) initialization of the weights (with or without pre-training) and ii) fine-tuning.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationhttps://doi.org/10.1007/s11042-017-5160-5es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceMultimedia Tools Applications, Vol. 77, No. 12, pp. 15875-15911es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherSpeech recognitiones_ES
dc.subject.otherNeural networkses_ES
dc.subject.otherGaussian mixture modelses_ES
dc.subject.otherHidden Markov modelses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherSpoken dialog systemes_ES
dc.titleSpeech recognition in a dialog system: from conventional to deep processing A case study applied to Spanishes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
25_Becerra_DelaRosa MTAP P1 2018.pdfBecerra_DelaRosa MTAP 2018506,65 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons