Please use this identifier to cite or link to this item:
http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1714
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | 31249 | es_ES |
dc.contributor.other | 0000-0002-7337-8974 | es_ES |
dc.contributor.other | https://orcid.org/0000-0002-7337-8974 | - |
dc.contributor.other | https://orcid.org/0000-0002-8060-6170 | - |
dc.coverage.spatial | Global | es_ES |
dc.creator | Becerra, Aldonso | - |
dc.creator | De la Rosa Vargas, José Ismael | - |
dc.creator | González Ramírez, Efrén | - |
dc.creator | Pedroza, David | - |
dc.creator | Escalante, N. Iracemi | - |
dc.date.accessioned | 2020-04-16T19:13:20Z | - |
dc.date.available | 2020-04-16T19:13:20Z | - |
dc.date.issued | 2018-10 | - |
dc.identifier | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.issn | 1380-7501 | es_ES |
dc.identifier.issn | 1573-7721 | es_ES |
dc.identifier.uri | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1714 | - |
dc.identifier.uri | https://doi.org/10.48779/mz95-hr57 | - |
dc.description.abstract | The aim of this paper is to exhibit two new variations of the frame-level cost function for training a deep neural network in order to achieve better word error rates in speech recognition. Optimization methods and their minimization functions are underlying aspects to consider when someone is working on neural nets, and hence their improvement is one of the salient objectives of researchers, and this paper deals in part with such a situation. The first proposed framework is based on the concept of extropy, the complementary dual function of an uncertainty measure. The conventional cross entropy function can be mapped to a non-uniform loss function based on its corresponding extropy, enhancing the frames that have ambiguity in their belonging to specific senones. The second proposal makes a fusion of the presented mapped cross-entropy function and the idea of boosted cross-entropy, which emphasizes those frames with low target posterior probability. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation | https://doi.org/10.1007/s11042- 018-5917-5 | es_ES |
dc.relation.uri | generalPublic | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | Multimedia Tools Applications, Vol. 77, No. 20, pp. 27231-27267 | es_ES |
dc.subject.classification | INGENIERIA Y TECNOLOGIA [7] | es_ES |
dc.subject.other | Speech recognition | es_ES |
dc.subject.other | Neural networks | es_ES |
dc.subject.other | Deep learning | es_ES |
dc.subject.other | Cross-entropy | es_ES |
dc.subject.other | Extropy | es_ES |
dc.subject.other | Frame-level loss function | es_ES |
dc.title | Training deep neural networks with non-uniform frame-level cost function for automatic speech recognition | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
Appears in Collections: | *Documentos Académicos*-- M. en Ciencias del Proc. de la Info. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
26_Becerra_DelaRosa MTAP P1 2018.pdf | Becerra_DelaRosa MTAP 2018 | 495,86 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License