Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1726
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor20608-
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorVilla Hernández, José de Jesús-
dc.creatorGonzález Ramírez, Efrén-
dc.creatorMoreon, Gamaliel-
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorFlores, Jorge Luís-
dc.creatorAlaniz Lumbreras, Daniel-
dc.date.accessioned2020-04-17T19:58:08Z-
dc.date.available2020-04-17T19:58:08Z-
dc.date.issued2020-02-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0030-4018es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1726-
dc.identifier.urihttps://doi.org/10.48779/6rxw-g822-
dc.description.abstractIn this paper, it is proposed a gaussian convolution-based fringe pattern denoising method. As will be shown, this method is robust enough compared with some of the most outstanding methods in the literature. Additionally, the proposed method overcomes the problem of underperformance in low-frequency fringes that is common in most oriented filtering methods, while keeping the great advantages of convolution-based filters. The advantages of the proposed denoising method will be demonstrated with experiments realized over synthetic and real fringe patterns, and comparing the performance with four representative methods, already reported.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationhttps://doi.org/10.1016/j.optcom.2019.124704es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceOptics Communications, Vol. 457, febrero de 2020, pp. 124704es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherFringe imageses_ES
dc.subject.otherFilteringes_ES
dc.subject.otherGaussian filterses_ES
dc.titleFringe pattern denoising using spatial oriented gaussian filterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
30_Villa_DelaRosa OptComm P1 2020.pdfVilla_DelaRosa OptComm 2020890,6 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons