Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1727
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.contributor.otherhttps://orcid.org/0000-0002-8060-6170-
dc.coverage.spatialGlobales_ES
dc.creatorBecerra, Aldonso-
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorGonzález Ramírez, Efrén-
dc.creatorPedroza, David-
dc.creatorEscalante, Iracemi-
dc.creatorSantos, Eduardo-
dc.date.accessioned2020-04-17T20:02:33Z-
dc.date.available2020-04-17T20:02:33Z-
dc.date.issued2020-03-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn1380-7501es_ES
dc.identifier.issn1573-7721es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1727-
dc.identifier.urihttps://doi.org/10.48779/crw1-0409-
dc.description.abstractTraining procedures of a deep neural network are still an area with ample research possibilities and constant improvement either to increase its efficiency or its time performance. One of the lesser-addressed components is its objective function, which is an underlying aspect to consider when there is the necessity to achieve better error rates in the area of automatic speech recognition. The aim of this paper is to present two new variations of the frame-level cost function for training a deep neural network with the purpose of obtaining superior word error rates in speech recognition applied to a case study in Spanish.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationhttps://doi.org/10.1007/s11042-020-08782-0es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceMultimedia Tools Applications, Vol. 79 / 80, marzo 2020es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherSpeech recognitiones_ES
dc.subject.otherNeural networkses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherCross-entropyes_ES
dc.subject.otherFrame-level loss functiones_ES
dc.titleA comparative case study of neural network training by using frame-level cost functions for automatic speech recognition purposes in Spanishes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
31_Becerra_DelaRosa MTAP P1 2020.pdfBecerra_DelaRosa MTAP 2020175,61 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons