Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1771
Full metadata record
DC FieldValueLanguage
dc.contributor267233es_ES
dc.coverage.spatialGlobales_ES
dc.creatorLuna Rosas, Francisco Javier-
dc.creatorMartínez Romo, Julio Cesar-
dc.creatorMendoza González, Ricardo-
dc.creatorLuna García, Huizilopoztli-
dc.creatorRodríguez Díaz, Mario Alberto-
dc.creatorRodríguez Martínez, Laura C.-
dc.date.accessioned2020-04-20T18:31:18Z-
dc.date.available2020-04-20T18:31:18Z-
dc.date.issued2018-01-01-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn2386-8406es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1771-
dc.description.abstractBreast cancer is one of the most deadly diseases in the world; therefore, rapid automated detection of breast cancer in patients is a relevant step in initiating appropriate treatment. In this paper we present a method that optimizes the response time in the automated detection of breast cancer in which a Raman signal is classified as coming from a healthy tissue biopsy or a damaged tissue biopsy. To carry out the detection, we applied Multivariate Component Analysis (PCA) in conjunction with a Classifier (Vector Support Machine (SVM)) in Parallel and from this methods we obtained high correct detection rates, corroborated when comparing the results of the classifier against previous tissue classifications performed by an expert pathologist. We believe that our approach can be applied to other organs of the body where timely detection and classification of cancer can be difficult and of prognostic relevance, such as stomach and pancreas, among others.es_ES
dc.language.isoenges_ES
dc.publisherDYNA Publishinges_ES
dc.relationhttps://www.dyna-newtech.com/busqueda-NT/pca-y-svm-en-paralelo-para-optimizar-diagnostico-de-cancer-de-mama-basado-en-espectroscopia-ramanes_ES
dc.relation.urigeneralPublices_ES
dc.sourceDYNA New Technologies, Vol. 5, enero-diciembre 2018, pp.14es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherParallel SVMes_ES
dc.subject.otherRaman Spectroscopyes_ES
dc.subject.otherBreast Cancer,es_ES
dc.subject.otherPCAes_ES
dc.titlePCA and Parellel SVM to Optimize the Diagnostic of Breast Cancer Based on Raman Spectroscopyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
DYNANT_2.pdf94,37 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.