Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1822
Title: On the Kernel selection for Minimum-Entropy estimation
Authors: De la Rosa, José Ismael
Fleury, Gilles
Issue Date: May-2002
Publisher: IEEE
Abstract: The purpose of this paper is to investigate the selection of an appropiate kernel to be used in a recent robust approach called mínimum entropy estimator (MEE), This MEE estimator is extended to measurement estimaiion and pdf approximation when p(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate p_n,h (e) of p(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selectian procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between resuUs obtoined with normal, cosine and Hilbert kernelr is presented.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1822
ISBN: 0-7803-7218-2
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
4_DelaRosa IEEEIMTC P1 2002.pdfDelaRosa IEEEIMTC P1 2002176,68 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons