Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1851
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorFleury, Gilles-
dc.creatorDavoust, Marie Eve-
dc.date.accessioned2020-04-28T17:20:31Z-
dc.date.available2020-04-28T17:20:31Z-
dc.date.issued2005-05-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.isbn0-7803-8879-8es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1851-
dc.identifier.urihttps://doi.org/10.48779/7jhv-p650-
dc.description.abstractThe purpose of the current paper is to present the comparison of different techniques for making statistical inference about a measurement systemmodel. This comparison presents results when two main assumptions are made. First, the unknowable behavior of the errors probability density function (pdf) p(e), since the real measurement systems are always exposed to continuous perturbations of an unknown nature; second, the assumption that after some experimentation one can obtain suf cient information which can be incorporated into the modelling as prior information. The first assumption lead us to propose the use of two approaches which permit building hybrid algorithms; such approaches are the non-parametric Bootstrap and the kernel methods. The second assumption makes possible the exploration of a Bayesian framework solution and the Monte Carlo Márkov Chain (MCMC) auxiliary use to access the a posteriori measurement pdf For both assumptions over p(e) and the model, different classical criteria can be used; one uses also an extension of a recent criterion of entropy minimization. Finally, a comparison between results obtained with the different schemes proposed in [9] is presented.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Instrumentation and Measurement Societyes_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceProc. of IEEE Instrumentation and Measurement Technology Conf. IMTC-2005, Vol. 2, pp. 1155-1160, Ottawa, Ontario (Canada), 17-19 May 2005.es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherMCMCes_ES
dc.subject.otherMeasure estimationes_ES
dc.subject.otherMonte Carlo simulationes_ES
dc.titleA statistical inference comparison for measurement estimation: Application to the estimation of groove dimensions by RFECes_ES
dc.typeinfo:eu-repo/semantics/conferencePaperes_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
11_DelaRosa IEEEIMTC P1 2005.pdfDelaRosa IEEEIMTC P1 2005440,3 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons