Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1864
Title: Semi-Huber potential function for image segmentation
Authors: Gutiérrez Mata, Osvaldo
De la Rosa Vargas, José Ismael
Villa Hernández, José de Jesús
González Elías, Efrén
Escalante, Nivia
Issue Date: Oct-2011
Publisher: Centro de Investigación en Matemáticas, A.C.
Abstract: In this work, a novel model of Markov random field is presented, named Semi-Huber potential function, applied to image segmentation in presence of noise. The main difference with respect to other models that have been taken as a reference, is that the number of parameters in the proposed model is significatively smaller. The idea is to choose adequate parameter values heuristically for a good segmentation of the image. In that sense, experiment results show that the proposed model allows a faster and easier parameter adjustment with razonable computation times.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1864
https://doi.org/10.48779/zkxj-cb26
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
43_Gutierrez_DelaRosa_CIMAT 2011.pdfGutierrez_DelaRosa_CIMAT 2011694,63 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons