Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1869
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorGutiérrez, Osvaldo-
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorVilla Hernández, José Ismael-
dc.creatorGonzález, Efrén-
dc.creatorEscalante, Nivia-
dc.date.accessioned2020-05-05T18:40:24Z-
dc.date.available2020-05-05T18:40:24Z-
dc.date.issued2012-10-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1869-
dc.identifier.urihttps://doi.org/10.48779/n9rx-yf40-
dc.description.abstractWe introduce a new approach for robust image segmentation combining two strategies within a Bayesian framework. The first one is to use a Markov random field (MRF) which allows to introduce prior information with the purpose of image edges preservation. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non-Gaussian or unknown, so it should be approximated by an estimated version, which is obtained by using the classical non-parametric or kernel density estimation. This lead us to the definition of a new maximum a posteriori (MAP) estimator based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were made for different kind of images degraded with impulsive noise (salt & pepper) and the segmentation results are very satisfactory and promising.es_ES
dc.language.isoenges_ES
dc.publisherCentro de Investigación en Matemáticas, A.C.es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceIX Taller-Escuela de Procesamiento de Imágenes - CIMAT, Guanajuato, Guanajuato, Octubre de 2012 (Memorias en CD).es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherRobust filteringes_ES
dc.subject.otherMarkov random field (MRF), Bayes estimationes_ES
dc.subject.otherBayes estimationes_ES
dc.titleBayesian entropy estimation applied to non-gaussian robust image segmentationes_ES
dc.typeinfo:eu-repo/semantics/conferencePaperes_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
47_Gutierrez_DelaRosa_CIMAT 2012.pdfGutierrez_DelaRosa_CIMAT 2012690,68 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons