Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1874
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor20608-
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorGutiérrez, Osvaldo-
dc.creatorVilla Hernández, José de Jesús-
dc.creatorGonzález Ramírez, Efrén-
dc.creatorDe la Rosa Miranda, Enrique-
dc.creatorFleury, Gilles-
dc.date.accessioned2020-05-06T17:35:43Z-
dc.date.available2020-05-06T17:35:43Z-
dc.date.issued2012-11-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.isbn978-607-95476-6-0es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1874-
dc.identifier.urihttps://doi.org/10.48779/6pkf-c480-
dc.description.abstractWe introduce an approach for image filtering in a Bayesian framework. In this case, the probability density function (pdf) of the likelihood function is approximated using the concept of non-parametric or kernel estimation. The method is complemented using Márkov random fields, for instance the Semi-Huber Markov random field (SHMRF), which is used as prior information into the Bayesian rule, and the principal objective of it is to eliminate those effects caused by the excessive smoothness on the reconstruction process of signals which are rich in discontinuities. Accordingly to the hypothesis made for the present work, it is assumed a limited knowl- edge of the noise pdf, so the idea is to use a non-parametric estimator to estimate such a pdf and then apply the entropy to construct the cost function for the likelihood term. The previous idea leads to the construction of new Maximum a posteriori (MAP) robust estimators, and considering that real systems are always exposed to continuous perturbations of unknown nature. Some promising results have been obtained from two new MAP entropy estimators (MAPEE) for the case of robust image filtering, where such results have been compared with respect to the classical median image filter.es_ES
dc.language.isoenges_ES
dc.publisherROPECes_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceProc. de la XIV Reunión de Otoño de Potencia, Electrónica y Computación, ROPEC 2012 INTERNACIONAL, Vol. 1, Colima, Colima, Nov. 2012. pp. 348-353es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherBayesian filteringes_ES
dc.subject.otherEntropy estimationes_ES
dc.titleBayesian nonparametric mrf and entropy estimation for robust image filteringes_ES
dc.typeinfo:eu-repo/semantics/conferenceProceedingses_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
51_DelaRosa_ROPEC 2012.pdfDelaRosa_ROPEC 20121,72 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons