Please use this identifier to cite or link to this item:
http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1886
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | 31249 | es_ES |
dc.contributor.other | https://orcid.org/0000-0002-7337-8974 | - |
dc.contributor.other | https://orcid.org/0000-0002-8060-6170 | - |
dc.coverage.spatial | Global | es_ES |
dc.creator | Becerra de la Rosa, Aldonso | - |
dc.creator | De la Rosa Vargas, José Ismael | - |
dc.creator | González Ramírez, Efrén | - |
dc.date.accessioned | 2020-05-06T19:51:43Z | - |
dc.date.available | 2020-05-06T19:51:43Z | - |
dc.date.issued | 2016-10 | - |
dc.identifier | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.uri | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1886 | - |
dc.identifier.uri | https://doi.org/10.48779/xc36-yn86 | - |
dc.description.abstract | The aim of this paper is to exhibit a comparative case study of the conventional speech recognition GMM-HMM (Gaussian mixture model - hidden Markov model) architecture and the recent model based on deep neural networks. During years the GMM approach has controlled the speech recognition tasks, however it has been surpassed with the resurgence of artificial neural networks. To exemplify these acoustic modeling frameworks, a case study has been conducted by using the Kaldi toolkit, employing a personalized speaker-independent mid-vocabulary voice corpus for recognition of digit strings and personal name lists in latin spanish on a connected-words pone dialing task. The speech recognition accuracy obtained in the results shows a better word error rate by using the DNN acoustic modeling. A 20:71% relative improvement is obtained with DNNHMM models (3:33% WER) in respect to the lowest GMM-HMM rate (4:20% WER). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.uri | generalPublic | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | Proc. of the IEEE Andean Council International Conference - IEEE ANDESCON 2016, at Arequipa, Perú, pp. 1-4, 2016. | es_ES |
dc.subject.classification | INGENIERIA Y TECNOLOGIA [7] | es_ES |
dc.subject.other | Speech recognition | es_ES |
dc.subject.other | GMM-HMM | es_ES |
dc.subject.other | DNN-HMM | es_ES |
dc.title | A Case Study of Speech Recognition in Spanish: from Conventional to Deep Approach | es_ES |
dc.type | info:eu-repo/semantics/conferencePaper | es_ES |
Appears in Collections: | *Documentos Académicos*-- M. en Ciencias del Proc. de la Info. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
64_Becerra_DelaRosa_IEEEANDESCON P1 2016.pdf | Becerra_DelaRosa_IEEEANDESCON P1 2016 | 405,7 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License