Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1899
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor20608es_ES
dc.contributor121858es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.contributor.otherhttps://orcid.org/0000-0001-8052-7483-
dc.coverage.spatialGlobales_ES
dc.creatorRodríguez Vázquez, Ángel-
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorVilla Hernández, José de Jesús-
dc.creatorAraiza Esquivel, María Auxiliadora-
dc.date.accessioned2020-05-07T14:49:09Z-
dc.date.available2020-05-07T14:49:09Z-
dc.date.issued2019-03-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1899-
dc.identifier.urihttps://doi.org/10.48779/n5zc-ne37-
dc.description.abstractThe present work introduces five different methods to deal with digital image restoration. Particularly deconvolution by Richardson-Lucy method, Wiener filter, deconvolution with Gaussian priors in the frequency domain, spatial domain and the use of sparse priors. The Bayesian methodology is based on the prior knowledge of some information that allows an efficient modeling of the image acquisition process. The edge preservation of objects into the image while smoothing noise is necessary for an adequate model. Thus, we use five deconvolution methods to recover images, all of the presented images are contained on TID 2008, all of them were previously degraded by Gaussian noise and convolved with a disc point spread function (PSF) making reference to a typical fluorescence microscopy degradation. The principal objective when using restoration methods in the context of image processing is to eliminate those effects caused by the excessive smoothness on the reconstruction process of an image which is rich in contours or edges and also is important to consider the process time due to an improvement in this área could lead to a faster application. A comparison between the five methods is presented for a restoration process. This collection of implemented methods has been compared using different metrics such as SNR, PSNR, SSIM and process time. The obtained results showed a satisfactory performance and the effectiveness of the proposed methods on color space.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceProc. of the IEEE XXVIII Reunion Internacional de Otoño, ROC&C'2018-2019, Acapulco Gro., del 6 al 8 de Marzo de 2019. Ponencia 162, pp. 1-6.es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherDigital image processinges_ES
dc.subject.otherimage deblurringes_ES
dc.subject.otherdeconvolutiones_ES
dc.titleImage restoration a comparative study of some methods applied to color imageses_ES
dc.typeinfo:eu-repo/semantics/conferencePaperes_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
78_RodriguezA_DelaRosa IEEEROCC P1 2019.pdfRodriguezA_DelaRosa IEEEROCC P1 2019455,66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons