Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1932
Full metadata record
DC FieldValueLanguage
dc.contributor299983es_ES
dc.contributor326164es_ES
dc.contributor.other0000-0002-7635-4687es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-9498-6602-
dc.contributor.other0000-0002-9498-6602-
dc.coverage.spatialGlobales_ES
dc.creatorAlcalá Ramírez, Vanessa-
dc.creatorZanella Calzada, Laura Alejandra-
dc.creatorGalván Tejada, Carlos Eric-
dc.creatorGarcía Hernández, Alejandra-
dc.creatorCrúz López, Miguel-
dc.creatorValladares Salgado, Adan-
dc.creatorGalván Tejada, Jorge Issac-
dc.creatorGamboa Rosales, Hamurabi-
dc.date.accessioned2020-05-21T19:55:50Z-
dc.date.available2020-05-21T19:55:50Z-
dc.date.issued2019-01-10-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn1660-4601es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1932-
dc.description.abstractDiabetes is a chronic and noncommunicable but preventable disease that is affecting the Mexican population at worrying levels, being the first place in prevalence worldwide. Early diabetes detection has become important to prevent other health conditions that involve low organ yield until the patient death. Based on this problem, this work proposes the architecture of an Artificial Neural Network (ANN) for the automated classification of healthy patients from diabetics patients. The analysis was performed used a set of 19 para-clinical features to determine the health status of the patients. The developed model was evaluated through a statistical analysis based on the calculation of the loss function, accuracy, area under the curve (AUC) and receiving operating characteristics (ROC) curve. The results obtained present statistically significant values, with accuracy of 0.94 and AUC values of 0.98. Based on these results, it is possible to conclude that the ANN implemented in this work can classify patients with presence of diabetes from controls with significant accuracy, presenting preliminary results for the development of a diagnostic tool that can be supportive for health specialistses_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationhttps://www.mdpi.com/1660-4601/16/3/381es_ES
dc.relation.urigeneralPublices_ES
dc.sourceInternational Journal of Environmental Research and Public Health Vol. 16 No.3, pp. 1-22es_ES
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD [3]es_ES
dc.subject.othertype 2 diabeteses_ES
dc.subject.otherArtificial Neural Networkes_ES
dc.subject.othernet reclassification improvemenes_ES
dc.subject.othercomputer-aided diagnosises_ES
dc.subject.otherstatistical analysises_ES
dc.titleIdentification of diabetic patients through clinical and para-clinical features in Mexico: an approach using deep neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
ijerph-16-00381-v2 (1).pdf430,55 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.