Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1974
Full metadata record
DC FieldValueLanguage
dc.contributor299983es_ES
dc.contributor267233es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7635-4687-
dc.contributor.otherhttps://orcid.org/0000-0002-9498-6602-
dc.contributor.other0000-0002-9498-6602-
dc.coverage.spatialGlobales_ES
dc.creatorRodríguez Ruiz, Julieta-
dc.creatorGalván Tejada, Carlos Eric-
dc.creatorZanella Calzada, Laura Alejandra-
dc.creatorCelaya Padilla, José-
dc.creatorGalván Tejada, Jorge-
dc.creatorGamboa Rosales, Hamurabi-
dc.creatorLuna García, Huizilopoztli-
dc.creatorMagallanes Quintanar, Rafael-
dc.creatorSoto Murillo, Manuel-
dc.date.accessioned2020-06-02T18:41:42Z-
dc.date.available2020-06-02T18:41:42Z-
dc.date.issued2020-03-10-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn2075-4418es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1974-
dc.identifier.urihttps://doi.org/10.48779/c3zd-r484-
dc.description.abstractMajor Depression Disease has been increasing in the last few years, affecting around 7 percent of the world population, but nowadays techniques to diagnose it are outdated and inefficient. Motor activity data in the last decade is presented as a better way to diagnose, treat and monitor patients suffering from this illness, this is achieved through the use of machine learning algorithms. Disturbances in the circadian rhythm of mental illness patients increase the effectiveness of the data mining process. In this paper, a comparison of motor activity data from the night, day and full day is carried out through a data mining process using the Random Forest classifier to identified depressive and non-depressive episodes. Data from Depressjon dataset is split into three different subsets and 24 features in time and frequency domain are extracted to select the best model to be used in the classification of depression episodes. The results showed that the best dataset and model to realize the classification of depressive episodes is the night motor activity data with 99.37% of sensitivity and 99.91% of specificity.es_ES
dc.language.isospaes_ES
dc.publisherMDPIes_ES
dc.relationhttps://www.mdpi.com/2075-4418/10/3/162/htmes_ES
dc.relation.urigeneralPublices_ES
dc.sourceDiagnostics, Vol.10, No. 3, marzo 2020es_ES
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD [3]es_ES
dc.subject.otherDepressiones_ES
dc.subject.otherdiagnosees_ES
dc.subject.othermental illness patientses_ES
dc.titleComparison of Night, Day and 24 h Motor Activity Data for the Classification of Depressive Episodeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
diagnostics-10-00162.pdf2,66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.