Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2207
Full metadata record
DC FieldValueLanguage
dc.contributor1019431es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-5395-855Xes_ES
dc.coverage.spatialGlobales_ES
dc.creatorMejía Hernández, Erik-
dc.creatorMoreno Chávez, Gamaliel-
dc.creatorVilla Hernández, José de Jesús-
dc.date.accessioned2021-01-20T20:12:41Z-
dc.date.available2021-01-20T20:12:41Z-
dc.date.issued2020-11-26-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.isbn978-1-7281-9953-5es_ES
dc.identifier.issn2573-0770es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2207-
dc.identifier.urihttps://doi.org/10.48779/jghd-s210es_ES
dc.description.abstractSedimentary rocks analysis is useful in geological science, economic sector, and risk evaluation. Roundness is a morphological parameter that provide information to characterize and classify sedimentary material. Roundness degrees is estimated from the contour of the particle. Waddell (1932) proposed a remarkable method based on the measurement of particle’s curvature. This method is accurate; evertheless, it is not invariant to scale and rotation. This problem can be solved by mapping the contour to the frequencydomain, however, spectral analysis is a difficult task. Based on these two approaches, we propose to use a deep neural network whose input is the elliptical Fourier spectrum and target is roundness proposed by Wadell. The training database consists of 623 realrocks images from some geological phenomena. We have found the neural networks perform very well on the 88.8% of rocks.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceInternational Autumn Meeting on Power, Electronics and Computing (XXII.- Ixtapa, México.- 4 al 6 de Noviembre), México, pp.1-5es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherMorfologíaes_ES
dc.subject.otherFourier Elípticoes_ES
dc.subject.otherRedes neuronaleses_ES
dc.titleRoundness Estimation of Sedimentary Rocks Using Eliptic Fourier and Deep Neural Networkses_ES
dc.typeinfo:eu-repo/semantics/conferenceProceedingses_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
ROPEC2020-041.pdf901,18 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons