Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3429
Full metadata record
DC FieldValueLanguage
dc.contributor31249en_US
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974en_US
dc.coverage.spatialGlobalen_US
dc.creatorRodarte Rodríguez, Armando-
dc.creatorBecerra Sánchez, Aldonso-
dc.creatorDe La Rosa Vargas, José I.-
dc.creatorEscalante García, Nivia I.-
dc.creatorOlvera González, José E.-
dc.creatorVelásquez Martínez, Emmanuel de J.-
dc.creatorZepeda Valles, Gustavo-
dc.date.accessioned2023-10-30T18:55:40Z-
dc.date.available2023-10-30T18:55:40Z-
dc.date.issued2022-10-30-
dc.identifierinfo:eu-repo/semantics/publishedVersionen_US
dc.identifier.isbn978-3-031-20321-3en_US
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3429-
dc.identifier.urihttp://dx.doi.org/10.48779/ricaxcan-260-
dc.description.abstractThe speech is a biological or physical feature unique to each person, and this is widely used in speaker identification tasks like access control, transaction authentication, home automation applications, among others. The aim of this research is to propose a connected-words speaker recognition scheme based on a closed-set speaker-independent voice corpus in noisy environments that can be applied in contexts such as forensic purposes. Using a KDD analysis, MFCCs were used as filtering technique to extract speech features from 158 speakers, to later carry out the speaker identification process. Paper presents a performance comparison of ANN, KNN and logistic regression models, which obtained a F1 score of 98%, 98.32% and 97.75%, respectively. The results show that schemes such as KNN and ANN can achieve a similar performance in full voice files when applying the proposed KDD framework, generating robust models applied in forensic environments.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relationhttps://link.springer.com/chapter/10.1007/978-3-031-20322-0_21en_US
dc.relation.ispartofhttps://link.springer.com/conference/cimpsen_US
dc.relation.isbasedonUAZ-2022-38599 Diseño de esquemas robustos para reconocimiento de voz y sistemas End-to-End (E2E): uso de nuevas funciones de costo y algoritmos de eliminación de ruidoen_US
dc.relation.urigeneralPublicen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceInternational Conference on Software Process Improvement CIMPS 2022: New Perspectives in Software Engineering, pp. 299–312en_US
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]en_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherKDDen_US
dc.subject.otherPrototypingen_US
dc.subject.otherSpeaker identificationen_US
dc.subject.otherSpeech processingen_US
dc.titleSpeaker Identification in Noisy Environments for Forensic Purposesen_US
dc.typeinfo:eu-repo/semantics/conferenceProceedingsen_US
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
82_RodarteA_DelaRosa CIMPS P1 2022_23.pdfRodarteA_DelaRosa CIMPS 202265,04 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons