Please use this identifier to cite or link to this item:
http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3430
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | 31249 | en_US |
dc.contributor.other | https://orcid.org/0000-0002-7337-8974 | en_US |
dc.coverage.spatial | Global | en_US |
dc.creator | Velásquez Martínez, Emmanuel de J. | - |
dc.creator | Becerra Sánchez, Aldonso | - |
dc.creator | De La Rosa Vargas, José I. | - |
dc.creator | González Ramírez, Efrén | - |
dc.creator | Zepeda Valles, Gustavo | - |
dc.creator | Rodarte Rodríguez, Armando | - |
dc.creator | Escalante García, Nivia I. | - |
dc.creator | Olvera González, J. Ernesto | - |
dc.date.accessioned | 2023-10-30T18:58:06Z | - |
dc.date.available | 2023-10-30T18:58:06Z | - |
dc.date.issued | 2022-11-15 | - |
dc.identifier | info:eu-repo/semantics/acceptedVersion | en_US |
dc.identifier.uri | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3430 | - |
dc.identifier.uri | http://dx.doi.org/10.48779/ricaxcan-261 | - |
dc.description.abstract | The speech is a unique biological feature to each person, and this is commonly used in speaker identification tasks like home automation applications, transaction authentication, health, access control, among others. The purpose of the present work is to compare gender classification and speaker identification experiments in order to determine the machine learning algorithm that shows the best metrics performance based on Mel frequency cepstral coefficients (MFCC) as speech descriptive features. In this process, the machine learning algorithms implemented were logistic regression, random forest, k-nearest neighbors and neural network, which were evaluated with accuracy, specificity, sensitivity and area under the curve. The schemes that revealed the best performance were random forest and k-nearest neighbors, reflecting an AUC (area under the curve) of 1, which indicates that the models have robust capacity of classification both in isolated samples and in complete audio files. The results obtained open guidelines to carry out another type of experimentation using the MFCC features with audios where the environment noise factor is included to measure the performance with these classification algorithms. The experimentation proposed for this work seeks to be applied in the future in different areas, where MFCC are used to describe the voice to perform another type of classification. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IEEE Explore | en_US |
dc.relation | https://ieeexplore.ieee.org/Xplore/home.jsp | en_US |
dc.relation.isbasedon | UAZ-2022-38599 Diseño de esquemas robustos para reconocimiento de voz y sistemas End-to-End (E2E): uso de nuevas funciones de costo y algoritmos de eliminación de ruido | en_US |
dc.relation.uri | generalPublic | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.source | Congreso Internacional de Mecatrónica Control e Inteligencia Artificial (CIMCIA), UNAM, FESC, Estado de México, 2022 | en_US |
dc.subject.classification | INGENIERIA Y TECNOLOGIA [7] | en_US |
dc.subject.other | Gender classification | en_US |
dc.subject.other | machine learning algorithms | en_US |
dc.subject.other | MFCC | en_US |
dc.subject.other | speaker identification | en_US |
dc.title | Gender classification and speaker identification using machine learning algorithms | en_US |
dc.type | info:eu-repo/semantics/conferenceProceedings | en_US |
Appears in Collections: | *Documentos Académicos*-- M. en Ciencias del Proc. de la Info. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
83_VelasquezE_DelaRosa CIMCIA_2022_23 p1.pdf | VelasquezE_DelaRosa CIMCIA_2022_23 | 770,54 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License