Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3430
Full metadata record
DC FieldValueLanguage
dc.contributor31249en_US
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974en_US
dc.coverage.spatialGlobalen_US
dc.creatorVelásquez Martínez, Emmanuel de J.-
dc.creatorBecerra Sánchez, Aldonso-
dc.creatorDe La Rosa Vargas, José I.-
dc.creatorGonzález Ramírez, Efrén-
dc.creatorZepeda Valles, Gustavo-
dc.creatorRodarte Rodríguez, Armando-
dc.creatorEscalante García, Nivia I.-
dc.creatorOlvera González, J. Ernesto-
dc.date.accessioned2023-10-30T18:58:06Z-
dc.date.available2023-10-30T18:58:06Z-
dc.date.issued2022-11-15-
dc.identifierinfo:eu-repo/semantics/acceptedVersionen_US
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/3430-
dc.identifier.urihttp://dx.doi.org/10.48779/ricaxcan-261-
dc.description.abstractThe speech is a unique biological feature to each person, and this is commonly used in speaker identification tasks like home automation applications, transaction authentication, health, access control, among others. The purpose of the present work is to compare gender classification and speaker identification experiments in order to determine the machine learning algorithm that shows the best metrics performance based on Mel frequency cepstral coefficients (MFCC) as speech descriptive features. In this process, the machine learning algorithms implemented were logistic regression, random forest, k-nearest neighbors and neural network, which were evaluated with accuracy, specificity, sensitivity and area under the curve. The schemes that revealed the best performance were random forest and k-nearest neighbors, reflecting an AUC (area under the curve) of 1, which indicates that the models have robust capacity of classification both in isolated samples and in complete audio files. The results obtained open guidelines to carry out another type of experimentation using the MFCC features with audios where the environment noise factor is included to measure the performance with these classification algorithms. The experimentation proposed for this work seeks to be applied in the future in different areas, where MFCC are used to describe the voice to perform another type of classification.en_US
dc.language.isoengen_US
dc.publisherIEEE Exploreen_US
dc.relationhttps://ieeexplore.ieee.org/Xplore/home.jspen_US
dc.relation.isbasedonUAZ-2022-38599 Diseño de esquemas robustos para reconocimiento de voz y sistemas End-to-End (E2E): uso de nuevas funciones de costo y algoritmos de eliminación de ruidoen_US
dc.relation.urigeneralPublicen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceCongreso Internacional de Mecatrónica Control e Inteligencia Artificial (CIMCIA), UNAM, FESC, Estado de México, 2022en_US
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]en_US
dc.subject.otherGender classificationen_US
dc.subject.othermachine learning algorithmsen_US
dc.subject.otherMFCCen_US
dc.subject.otherspeaker identificationen_US
dc.titleGender classification and speaker identification using machine learning algorithmsen_US
dc.typeinfo:eu-repo/semantics/conferenceProceedingsen_US
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
83_VelasquezE_DelaRosa CIMCIA_2022_23 p1.pdfVelasquezE_DelaRosa CIMCIA_2022_23770,54 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons