Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1675
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorMiramontes de León, Gerardo-
dc.date.accessioned2020-04-15T17:48:58Z-
dc.date.available2020-04-15T17:48:58Z-
dc.date.issued2008-10-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0018-9456es_ES
dc.identifier.issn1557-9662es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1675-
dc.identifier.urihttps://doi.org/10.48779/67md-eq91-
dc.description.abstractThe purpose of this paper is to present a comparison of different techniques for making statistical inference about a measurement system model. This comparison involves results when two main assumptions are made: 1) the unknowable behavior of the probability density function (pdf) p(e) of errors since the real measurement systems are always exposed to continuous perturbations of an unknown nature and 2) the assumption that, after some experimentation, one can obtain sufficient information that can be incorporated into the modeling as prior information.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Instrumentation and Measurement Societyes_ES
dc.relationDOI: 10.1109/TIM.2008.922098es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceIEEE Trans. on Instrumentation and Measurement, Vol. 57, No. 10, pp. 2169-2180, October 2008.es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherBootstrapes_ES
dc.subject.otherindirect measurementes_ES
dc.subject.otherMonte Carlo Markov chain (MCMC)es_ES
dc.subject.othernonlinear regressiones_ES
dc.subject.othernonparametric probability density function (pdf) estimationes_ES
dc.titleA Statistical Inference Comparison for Measurement Estimation Using Stochastic Simulation Techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
5_DelaRosa IEEETIM P1 2008.pdfDelaRosa IEEETIM 2008387,85 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons