Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1675
Title: A Statistical Inference Comparison for Measurement Estimation Using Stochastic Simulation Techniques
Authors: De la Rosa Vargas, José Ismael
Miramontes de León, Gerardo
Issue Date: Oct-2008
Publisher: IEEE Instrumentation and Measurement Society
Abstract: The purpose of this paper is to present a comparison of different techniques for making statistical inference about a measurement system model. This comparison involves results when two main assumptions are made: 1) the unknowable behavior of the probability density function (pdf) p(e) of errors since the real measurement systems are always exposed to continuous perturbations of an unknown nature and 2) the assumption that, after some experimentation, one can obtain sufficient information that can be incorporated into the modeling as prior information.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1675
https://doi.org/10.48779/67md-eq91
ISSN: 0018-9456
1557-9662
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
5_DelaRosa IEEETIM P1 2008.pdfDelaRosa IEEETIM 2008387,85 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons