Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1676
Title: Semi-Huber potential function for image segmentation
Authors: Gutiérrez, Osvaldo
De la Rosa Vargas, José Ismael
Villa Hernández, José de Jesús
González Ramírez, Efrén
Escalante, Nivia
Issue Date: Mar-2012
Publisher: Osa Publishing
Abstract: In this work, a novel model of Markov Random Field (MRF) is introduced. Such a model is based on a proposed Semi-Huber potential function and it is applied successfully to image segmentation in presence of noise. The main difference with respect to other half-quadratic models that have been taken as a reference is, that the number of parameters to be tuned in the proposed model is smaller and simpler. The idea is then, to choose adequate parameter values heuristically for a good segmentation of the image. In that sense, some experimental results show that the proposed model allows an easier parameter adjustment with reasonable computation times.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1676
https://doi.org/10.48779/w786-r594
ISSN: 1094-4087
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
11_Gutierrez_Delarosa OptExpress 2012.pdfGutierrez_Delarosa OptExpress 20121,03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons