Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1830
Title: Bootstrap methods applied to indirect measurement
Authors: De la Rosa, José Ismael
Fleury, Gilles
Issue Date: Jan-2001
Publisher: ESE - France
Abstract: A biased bootstrap technique is presented to obtain robust parameter and measurement estimates. Moreover, the estimation of a measurement probability density function (pdf) using classical bootstrap techniques is presented as our final goal. Most of the time, large scale repetition of an experiment is not economically feasible, the Monte Carlo method cannot be used for uncertainty characterization and bootstrap methods are proved to be a potentially useful alternative. The measurement characterization is driven by the pdf estimation in a non-linear non-Gaussian case and with limited observed data.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1830
ISBN: 2-912328-16-0
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
3_DelaRosa_PISP 2001.pdfDelaRosa_PISP 2001879,41 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons