Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1646
Full metadata record
DC FieldValueLanguage
dc.contributor31249es_ES
dc.contributor.otherhttps://orcid.org/0000-0002-7337-8974-
dc.coverage.spatialGlobales_ES
dc.creatorDe la Rosa Vargas, José Ismael-
dc.creatorFleury, Gilles-
dc.creatorDavoust, Marie Eve-
dc.date.accessioned2020-04-14T19:18:24Z-
dc.date.available2020-04-14T19:18:24Z-
dc.date.issued2003-08-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0018-9456es_ES
dc.identifier.issn1557-9662es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1646-
dc.identifier.urihttps://doi.org/10.48779/7w3h-8v75-
dc.description.abstractThe purpose of this paper is to investigate the selection of an appropriate kernel to be used in a recent robust approach called minimum-entropy estimator (MEE). This MEE estimator is extended to measurement estimation and pdf approximation when p(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate p_hat (e) of p(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selection procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between results obtained with normal, cosine and Hilbert kernels is presented.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Transactions on Instrumentation and Measurementes_ES
dc.relation10.1109/TIM.2003.814816es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceIEEE Transactios on Instrumentation and Measurement, Vol. 52, No. 4, August 2003, pp. 1009-1020es_ES
dc.subject.classificationINGENIERIA Y TECNOLOGIA [7]es_ES
dc.subject.otherBootstrapes_ES
dc.subject.otherindirect measurementes_ES
dc.subject.otherMonte Carlo simulationes_ES
dc.subject.othernonlinear regressiones_ES
dc.subject.othernonparametric PDF estimationes_ES
dc.titleMinimum-Entropy, PDF Approximation, and Kernel Selection for Measurement Estimationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
1_DelaRosa IEEETIM P1 2003.pdfDelaRosa IEEETIM 2003757,66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons